Spontaneous parametric down-conversion (SPDC), an inherently random quantum process, produces pair photons with strong temporal and spatial correlations due to energy and momentum conservation, and acts as the key for quantum random number generation (QRNG). Standard QRNG methods primarily use temporal correlations with beam splitters, limiting bit rates. However, due to spatial correlation, the pair photons in non-collinear phase-matched SPDC-setup appear at diametrically opposite points on an annular spatial distribution. Therefore, exploring the temporal correlation between the spatially correlated photon-pairs from different sections of the annual ring can directly lead to device-independent, multi-bit QRNG at a high rate, eliminating the need of a physical object such as a beam splitter. As a proof-of-concept, we report on high-bit-rate QRNG by using spatial correlation of photon-pairs by sectioning the SPDC ring of a non-collinear, degenerate, high-brightness source and temporal correlation between the diametrically opposite sections. Dividing the annular ring of the high-brightness photon-pair source based on a 20-mm-long, type-0 phase-matched, periodically poled KTP crystal into four sections, recording the timestamp of the coincidences (window of 1 ns) between photons from diametrically opposite sections and assigning bits (0 and 1), we extracted 90 × 106 raw bits over 27.7 s at a pump power of 17 mW. Using minimum entropy evaluation, we determined an extraction ratio of over 95  % for raw bits. Further, using Toeplitz matrix-based post-processing, we developed QRNG with bit rate of 3 Mbps, passing all NIST 800-22 and TestU01 test suites. The generic scheme shows the possibility of further enhancement of bit rate with more sectioning of the SPDC ring.

1.
H.-Q.
Ma
,
Y.
Xie
, and
L.-A.
Wu
,
Appl. Opt.
44
,
7760
(
2005
).
2.
M.
Stipčević
and
B. M.
Rogina
,
Rev. Sci. Instrum.
78
,
045104
(
2007
).
3.
M.
Hai-Qiang
,
W.
Su-Mei
,
Z.
Da
,
C.
Jun-Tao
,
J.
Ling-Ling
,
H.
Yan-Xue
, and
W.
Ling-An
,
Chin. Phys. Lett.
21
,
1961
(
2004
).
4.
M.
Herrero-Collantes
and
J. C.
Garcia-Escartin
,
Rev. Mod. Phys.
89
,
015004
(
2017
).
5.
G.
Brassard
and
C.
Goutier
,
Cryptologie Contemporaine
(
Paris Milan Mexico Masson
,
1993
), Vol.
9
.
6.
F.
James
and
L.
Moneta
,
Comput. Software Big Sci.
4
,
1
(
2020
).
7.
C. H.
Vincent
,
J. Phys. E: Sci. Instrum.
4
,
825
(
1971
).
8.
D.
Chaum
and
W. L.
Price
,
Advances in Cryptology–EUROCRYPT'87: Workshop on the Theory and Application of Cryptographic Techniques, Amsterdam, The Netherlands, April 13-15, 1987 Proceedings
(
Springer
,
2003
), Vol.
304
.
9.
H.
Schmidt
,
J. Appl. Phys.
41
,
462
(
1970
).
10.
Q.
Luo
,
Z.
Cheng
,
J.
Fan
,
L.
Tan
,
H.
Song
,
G.
Deng
,
Y.
Wang
, and
Q.
Zhou
,
Opt. Lett.
45
,
4224
(
2020
).
11.
S. J. U.
White
,
F.
Klauck
,
T.
Trong Tran
,
N.
Schmitt
,
M.
Kianinia
,
A.
Steinfurth
,
M.
Heinrich
,
M.
Toth
,
A.
Szameit
et al
J. Opt.
23
,
01LT01
(
2021
).
12.
X.
Chen
,
J. N.
Greiner
,
J.
Wrachtrup
, and
I.
Gerhardt
,
Sci. Rep.
9
,
18474
(
2019
).
13.
B.
Qi
,
Y.-M.
Chi
,
H.-K.
Lo
, and
L.
Qian
,
Opt. Lett.
35
,
312
(
2010
).
14.
B.
Haylock
,
D.
Peace
,
F.
Lenzini
,
C.
Weedbrook
, and
M.
Lobino
,
Quantum
3
,
141
(
2019
).
15.
Z.
Zheng
,
Y.
Zhang
,
W.
Huang
,
S.
Yu
, and
H.
Guo
,
Rev. Sci. Instrum.
90
,
043105
(
2019
).
16.
A.
Dandasi
,
H.
Ozel
,
O.
Hasekioglu
, and
K.
Durak
,
J. Opt.
23
,
065201
(
2021
).
17.
M. J.
Ferreira
,
N. A.
Silva
,
A. N.
Pinto
, and
N. J.
Muga
,
Appl. Sci.
11
,
7413
(
2021
).
18.
F.
Xu
,
B.
Qi
,
X.
Ma
,
H.
Xu
,
H.
Zheng
, and
H.-K.
Lo
,
Opt. Express
20
,
12366
(
2012
).
19.
J. F.
Dynes
,
Z. L.
Yuan
,
A. W.
Sharpe
, and
A. J.
Shields
,
Appl. Phys. Lett.
93
,
031109
(
2008
).
20.
T.
Jennewein
,
U.
Achleitner
,
G.
Weihs
,
H.
Weinfurter
, and
A.
Zeilinger
,
Rev. Sci. Instrum.
71
,
1675
(
2000
).
21.
M. A.
Wayne
and
P. G.
Kwiat
,
Opt. Express
18
,
9351
(
2010
).
22.
J. E.
Jacak
,
W. A.
Jacak
,
W. A.
Donderowicz
, and
L.
Jacak
,
Sci. Rep.
10
,
164
(
2020
).
23.
Y.-H.
Li
,
X.
Han
,
Y.
Cao
,
X.
Yuan
,
Z.-P.
Li
,
J.-Y.
Guan
,
J.
Yin
,
Q.
Zhang
,
X.
Ma
,
C.-Z.
Peng
et al, npj Quantum Information
5
, 97 (
2019
).
24.
T.
Gehring
,
C.
Lupo
,
A.
Kordts
,
D. S.
Nikolic
,
N.
Jain
,
T.
Rydberg
,
T. B.
Pedersen
,
S.
Pirandol
, and
U. L.
Andersen
,
Nat. Commun.
12
,
605
(
2021
).
25.
Z.
Lu
,
J.
Liu
,
X.
Wang
,
P.
Wang
,
Y.
Li
, and
K.
Peng
,
Opt. Express
29
,
12440
(
2021
).
26.
N.
Leone
,
S.
Azzini
,
S.
Mazzucchi
,
V.
Moretti
, and
L.
Pavesi
,
Phys. Rev. Appl.
17
,
034011
(
2022
).
27.
H.-Q.
Ma
,
S.-M.
Wang
,
D.
Zhang
,
J.-T.
Chang
,
L.-L.
Ji
,
Y.-X.
Hou
, and
L.-A.
Wu
,
Chin. Phys. Lett.
21
,
1961
(
2004
).
28.
D.
Branning
and
M.
Bermudez
,
J. Opt. Soc. Am. B
27
,
1594
(
2010
).
29.
F.
Xu
,
J. H.
Shapiro
, and
F. N. C.
Wong
,
Optica
3
,
1266
(
2016
).
30.
O.
Kwon
,
Y.-W.
Cho
, and
Y.-H.
Kim
,
Appl. Opt.
48
,
1774
(
2009
).
31.
M. V.
Jabir
and
G. K.
Samanta
,
Sci. Rep.
7
,
12613
(
2017
).
32.
S.
Singh
,
V.
Kumar
,
V.
Sharma
,
D.
Faccio
, and
G. K.
Samanta
,
Adv. Quantum Technol.
6
,
2300177
(
2023
).
33.
S.
Singh
,
V.
Kumar
,
A.
Ghosh
,
A.
Forbes
, and
G. K.
Samanta
,
Adv. Quantum Technol.
6
,
2200121
(
2023
).
34.
C. K.
Hong
,
Z. Y.
Ou
, and
L.
Mandel
,
Phys. Rev. Lett.
59
,
2044
(
1987
).
35.
A. B.
U'Ren
,
C.
Silberhorn
,
J. L.
Ball
,
K.
Banaszek
, and
I. A.
Walmsley
,
Phys. Rev. A
72
,
021802
(
2005
).
36.
S.
Singh
,
V.
Kumar
, and
G. K.
Samanta
,
APL Quantum
1
,
046117
(
2024
).
37.
R. H.
Brown
and
R. Q.
Twiss
, “
A test of a new type of stellar interferometer on sirius
,” in
A Source Book in Astronomy and Astrophysics, 1900–1975
(
Harvard University Press
,
1979
), pp.
8
12
.
38.
R.
Trivedi
,
K. A.
Fischer
,
J.
Vučković
, and
K.
Müller
,
Adv. Quantum Technol.
3
,
1900007
(
2020
).
39.
H.
Ollivier
,
S. E.
Thomas
,
S. C.
Wein
,
I. M.
de Buy Wenniger
,
N.
Coste
,
J. C.
Loredo
,
N.
Somaschi
,
A.
Harouri
,
A.
Lemaitre
et al
Phys. Rev. Lett.
126
,
063602
(
2021
).
40.
A.
Lyons
,
V.
Zickus
,
R.
Álvarez-Mendoza
,
D.
Triggiani
,
V.
Tamma
,
N.
Westerberg
,
M.
Tassieri
, and
D.
Faccio
,
Nat. Commun.
14
,
8005
(
2023
).
41.
X.
Ma
,
F.
Xu
,
H.
Xu
,
X.
Tan
,
B.
Qi
, and
H.-K.
Lo
,
Phys. Rev. A
87
,
062327
(
2013
).
42.
H.
Krawczyk
, “
LFSR-based hashing and authentication
,” in
Annual International Cryptology Conference
(
Springer
,
1994
), pp.
129
139
.
43.
A.
Rukhin
,
J.
Soto
,
J.
Nechvatal
,
M.
Smid
,
E.
Barker
,
S.
Leigh
,
M.
Levenson
,
M.
Vangel
,
D.
Banks
et al,
A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications
(
US Department of Commerce, National Institute of Technology Administration
,
2001
), Vol.
22
.
44.
P.
L'ecuyer
and
R.
Simard
,
ACM Trans. Math. Software
33
,
1
(
2007
).
45.
M. E.
O'neill
, “
PCG: A family of simple fast space-efficient statistically good algorithms for random number generation
,” Technical Report HMC-CS-2014-0905 (
Harvey Mudd College
,
Claremont, CA
,
2014
).
46.
Y.
Zhang
,
L. K.
Shalm
,
J. C.
Bienfang
,
M. J.
Stevens
,
M. D.
Mazurek
,
S. W.
Nam
,
C.
Abellán
,
W.
Amaya
,
M. W.
Mitchell
et al,
Phys. Rev. Lett.
124
,
010505
(
2020
).
47.
Y.
Liu
,
Q.
Zhao
,
M.-H.
Li
,
J.-Y.
Guan
,
Y.
Zhang
,
B.
Bai
,
W.
Zhang
,
W.-Z.
Liu
,
C.
Wu
et al,
Nature
562
,
548
(
2018
).
48.
L.
Shen
,
J.
Lee
,
L. P.
Thinh
,
J.-D.
Bancal
,
A.
Cere
,
A.
Lamas-Linares
,
A.
Lita
,
T.
Gerrits
,
S. W.
Nam
et al,
Phys. Rev. Lett.
121
,
150402
(
2018
).
49.
W.-Z.
Liu
,
M.-H.
Li
,
S.
Ragy
,
S.-R.
Zhao
,
B.
Bai
,
Y.
Liu
,
P. J.
Brown
,
J.
Zhang
,
R.
Colbeck
et al,
Nat. Phys.
17
,
448
(
2021
).
50.
K. M.
Shafi
,
P.
Chawla
,
A. S.
Hegde
,
R.
Gayatri
,
A.
Padhye
, and
C.
Chandrashekar
,
EPJ Quantum Technol.
10
,
43
(
2023
).
You do not currently have access to this content.