Single-photon detectors (SPDs) are ubiquitous in many protocols for quantum imaging, sensing, and communications. Many of these protocols critically depend on the precise knowledge of their detection efficiency. A method for the calibration of SPDs based on sources of quantum-correlated photon pairs uses single-photon detection to generate heralded single photons, which can be used as a standard of radiation at the single-photon level. These heralded photons then allow for precise calibration of SPDs in absolute terms. In this work, we investigate the absolute calibration of avalanche photodiodes based on a portable, commercial bi-photon source, and investigate the effects of multi-photon events from the spontaneous parametric down conversion (SPDC) process in these sources. We show that the multi-photon character of the bi-photon source, together with system losses, has a significant impact on the achievable accuracy for the calibration of SPDs. However, modeling the expected photon counting statistics from the squeezed vacuum in the SPDC process allows for accurate estimation of the efficiency of SPDs, assuming that the system losses are known. This study provides essential information for the design and optimization of portable bi-photon sources for their application in on-site calibration of SPDs with high accuracy, without requiring any other reference standard.

1.
J. S.
Sidhu
,
S. K.
Joshi
,
M.
Gündoğan
,
T.
Brougham
,
D.
Lowndes
,
L.
Mazzarella
,
M.
Krutzik
,
S.
Mohapatra
,
D.
Dequal
et al,
IET Quantum Commun.
2
,
182
(
2021
).
2.
M.
Tse
,
H.
Yu
,
N.
Kijbunchoo
,
A.
Fernandez-Galiana
,
P.
Dupej
,
L.
Barsotti
,
C.
Blair
,
D.
Brown
,
S.
Dwyer
et al,
Phys. Rev. Lett.
123
,
231107
(
2019
).
3.
T.
Ono
,
R.
Okamoto
, and
S.
Takeuchi
,
Nat. Commun.
4
,
2426
(
2013
).
4.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G.
Brandao
et al,
Nature
574
,
505
(
2019
).
5.
S.
Dello Russo
,
A.
Elefante
,
D.
Dequal
,
D. K.
Pallotti
,
L.
Santamaria Amato
,
F.
Sgobba
, and
M.
Siciliani de Cumis
,
Photonics
9
,
470
(
2022
).
6.
C. J.
Chunnilall
,
I. P.
Degiovanni
,
S.
Kück
,
I.
Müller
, and
A. G.
Sinclair
,
Opt. Eng.
53
,
081910
(
2014
).
7.
R.
Liu
,
G. G.
Rozenman
,
N. K.
Kundu
,
D.
Chandra
, and
D.
De
,
IET Quantum Commun.
3
,
151
(
2022
).
8.
R.
Bedington
,
J. M.
Arrazola
, and
A.
Ling
,
npj Quantum Inf.
3
,
30
(
2017
).
9.
M. A.
Taylor
and
W. P.
Bowen
,
Phys. Rep.
615
,
1
(
2016
).
10.
A. M.
Bhargav
,
R. K.
Rakshit
,
S.
Das
, and
M.
Singh
,
Adv. Quantum Technol.
4
,
2100008
(
2021
).
11.
S.
Kück
,
M.
López
,
H.
Hofer
,
H.
Georgieva
,
J.
Christinck
,
B.
Rodiek
,
G.
Porrovecchio
,
M.
Šmid
,
S.
Götzinger
et al,
Appl. Phys. B
128
,
28
(
2022
).
12.
F.
Madonini
,
F.
Severini
,
F.
Zappa
, and
F.
Villa
,
Adv. Quantum Technol.
4
,
2100005
(
2021
).
13.
S.
Slussarenko
and
G. J.
Pryde
,
Appl. Phys. Rev.
6
,
041303
(
2019
).
14.
K.
Khomiakova
,
A.
Kokhanenko
, and
A.
Losev
,
J. Phys.: Conf. Ser.
2140
,
012030
(
2021
).
15.
C.-W.
Tsai
,
C.-W.
Yang
,
J.
Lin
,
Y.-C.
Chang
, and
R.-S.
Chang
,
Appl. Sci.
11
,
3767
(
2021
).
16.
A.
Tzalenchuk
,
N.
Spethmann
,
T.
Prior
,
J. H.
Hendricks
,
Y.
Pan
,
V.
Bubanja
,
G. P.
Temporão
,
D.-H.
Yu
,
D.
Ilić
et al
Nat. Phys.
18
,
724
(
2022
).
17.
M.
Ware
,
A.
Migdall
,
J. C.
Bienfang
, and
S. V.
Polyakov
,
J. Mod. Opt.
54
,
361
(
2007
).
18.
M. A.
Wayne
,
J. C.
Bienfang
, and
S. V.
Polyakov
,
Opt. Express
25
,
20352
(
2017
).
19.
A. W.
Ziarkash
,
S. K.
Joshi
,
M.
Stipčević
, and
R.
Ursin
,
Sci. Rep.
8
,
5076
(
2018
).
20.
X.
Tao
,
H. H. X.
Li
,
S.
Chen
,
L.
Wang
,
X.
Tu
,
X.
Jia
,
L.
Zhang
,
Q.
Zhao
,
L.
Kang
et al,
IEEE Photonics J.
12
,
1
(
2020
).
21.
G.
ETSI
, “
011. Quantum key distribution (QKD); component characterization: characterizing optical components for QKD systems
,” (
2016
); available at https://www.etsi.org/deliver/etsi_gs/qkd/001_099/011/01.01.0160/gs_qkd011v010101p.pdf
22.
M.
Mohageg
,
L.
Mazzarella
,
C.
Anastopoulos
,
J.
Gallicchio
,
B.-L.
Hu
,
T.
Jennewein
,
S.
Johnson
,
S.-Y.
Lin
,
A.
Ling
et al,
EPJ Quantum Technol.
9
,
25
(
2022
).
23.
K.
Dhoska
,
H.
Hofer
,
B.
Rodiek
,
M.
López
,
T.
Kübarsepp
, and
S.
Kück
,
SpringerPlus
5
,
2065
(
2016
).
24.
S. V.
Polyakov
and
A. L.
Migdall
,
Opt. Express
15
,
1390
(
2007
).
25.
J. Y.
Cheung
,
C. J.
Chunnilall
,
G.
Porrovecchio
,
M.
Smid
, and
E.
Theocharous
,
Opt. Express
19
,
20347
(
2011
).
26.
J.
Jin
,
T.
Gerrits
, and
A.
Gamouras
,
Appl. Opt.
61
,
5244
(
2022
).
27.
D.
Klyshko
,
Sov. J. Quantum Electron.
10
,
1112
(
1980
).
28.
A.
Migdall
,
S.
Castelletto
,
I. P.
Degiovanni
, and
M. L.
Rastello
,
Appl. Opt.
41
,
2914
(
2002
).
29.
T.
Gerrits
,
A.
Migdall
,
J. C.
Bienfang
,
J.
Lehman
,
S. W.
Nam
,
J.
Splett
,
I.
Vayshenker
, and
J.
Wang
,
Metrologia
57
,
015002
(
2020
).
30.
E. R.
Hellebek
,
K.
Mølmer
, and
A. S.
Sørensen
, “
Characterization of the multimode nature of single-photon sources based on spontaneous parametric down conversion
,” arXiv:2404.10682 (
2024
).
31.
Qubitekk
, see https://qubitekk.com/products/entangled-photon-source-with-integrated-laser/ for “
Entangled photon source with integrated laser
” (
2024
), accessed: 20 June 2024.
32.
S.
Biller
,
N.
Jelley
,
M.
Thorman
,
N.
Fox
, and
T.
Ward
,
Nucl. Instrum. Methods Phys. Res., Sect. A
432
,
364
(
1999
).
33.
N. P.
Fox
and
J. P.
Rice
, “
2. Absolute radiometers
,” in
Experimental Methods in the Physical Sciences
(
Elsevier
,
2005
), Vol.
41
, pp.
35
96
.
34.
I.
Müller
,
R.
Klein
,
J.
Hollandt
,
G.
Ulm
, and
L.
Werner
,
Metrologia
49
,
S152
(
2012
).
35.
A.
Avella
,
I.
Ruo-Berchera
,
I. P.
Degiovanni
,
G.
Brida
, and
M.
Genovese
,
Opt. Lett.
41
,
1841
(
2016
).
36.
D.
Horoshko
,
S.
De Bièvre
,
G.
Patera
, and
M.
Kolobov
,
Phys. Rev. A
100
,
053831
(
2019
).
37.
S.
Sempere-Llagostera
,
G.
Thekkadath
,
R.
Patel
,
W.
Kolthammer
, and
I.
Walmsley
,
Opt. Express
30
,
3138
(
2022
).
38.
M. D. C.
Pereira
,
F. E.
Becerra
,
B. L.
Glebov
,
J.
Fan
,
S. W.
Nam
, and
A.
Migdall
,
Opt. Lett.
38
,
1609
(
2013
).
39.
M.
Massaro
,
E.
Meyer-Scott
,
N.
Montaut
,
H.
Herrmann
, and
C.
Silberhorn
,
New J. Phys.
21
,
053038
(
2019
).
40.
J.
Jeffers
,
N.
Imoto
, and
R.
Loudon
,
Phys. Rev. A
47
,
3346
(
1993
).
41.
D.
Hogg
,
D. W.
Berry
, and
A.
Lvovsky
,
Phys. Rev. A
90
,
053846
(
2014
).
42.
D.
Bonneau
,
G. J.
Mendoza
,
J. L.
O'Brien
, and
M. G.
Thompson
,
New J. Phys.
17
,
043057
(
2015
).
43.
Gentec-EO
, see https://www.gentec-eo.com/products/trap7-si-c-bnc for “
Trap7-si-c-bnc
” (
2024
).
44.
G. P.
Eppeldauer
, “
Optical radiation measurements based on detector standards
,” US Department of Commerce, National Institute of Technology Administration (
2009
).
45.
APD3 is used for studying the statistical properties of the heralded photonic state in the Klyshko method, and is not used in the conventional calibration method.
46.
M.
Beck
,
J. Opt. Soc. Am. B
24
,
2972
(
2007
).
47.
L.
Stasi
,
P.
Caspar
,
T.
Brydges
,
H.
Zbinden
,
F.
Bussières
, and
R.
Thew
,
Quantum Sci. Technol.
8
,
045006
(
2023
).
48.
E.
Meyer-Scott
,
C.
Silberhorn
, and
A.
Migdall
,
Rev. Sci. Instrum.
91
,
041101
(
2020
).
49.
F.
Kaneda
,
K.
Garay-Palmett
,
A. B.
U'Ren
, and
P. G.
Kwiat
,
Opt. Express
24
,
10733
(
2016
).
50.
A.
Christ
and
C.
Silberhorn
,
Phys. Rev. A
85
,
023829
(
2012
).
51.
F.
Kaiser
,
B.
Fedrici
,
A.
Zavatta
,
V.
d'Auria
, and
S.
Tanzilli
,
Optica
3
,
362
(
2016
).
52.
R. S.
Bennink
,
Phys. Rev. A
81
,
053805
(
2010
).
53.
D.
Ljunggren
and
M.
Tengner
,
Phys. Rev. A
72
,
062301
(
2005
).
54.
P. B.
Dixon
,
D.
Rosenberg
,
V.
Stelmakh
,
M. E.
Grein
,
R. S.
Bennink
,
E. A.
Dauler
,
A. J.
Kerman
,
R. J.
Molnar
, and
F. N.
Wong
,
Phys. Rev. A
90
,
043804
(
2014
).
55.
U.
Leonhardt
,
Measuring the Quantum State of Light
(
Cambridge University Press
,
1997
), Vol.
22
.
56.
C.
Spiess
,
S.
Töpfer
,
S.
Sharma
,
A.
Kržič
,
M.
Cabrejo-Ponce
,
U.
Chandrashekara
,
N. L.
Döll
,
D.
Rieländer
, and
F.
Steinlechner
,
Phys. Rev. Appl.
19
,
054082
(
2023
).
You do not currently have access to this content.