Fluid flow simulations marshal our most powerful computational resources. In many cases, even this is not enough. Quantum computers provide an opportunity to speed up traditional algorithms for flow simulations. We show that lattice-based mesoscale numerical methods can be executed as efficient quantum algorithms due to their statistical features. This approach revises a quantum algorithm for lattice gas automata to reduce classical computations and state preparation at every time step. For this, the algorithm approximates the qubit relative phases and subtracts them at the end of each time step. Phases are evaluated using the iterative phase estimation algorithm and subtracted using single-qubit rotation phase gates. This method optimizes the quantum resource required and makes it more appropriate for near-term quantum hardware. We also demonstrate how the checkerboard deficiency that the D1Q2 scheme presents can be resolved using the D1Q3 scheme. The algorithm is validated by simulating two canonical partial differential equations: the diffusion and Burgers' equations on different quantum simulators. We find good agreement between quantum simulations and classical solutions for the presented algorithm.

1.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
2.
L. K.
Grover
, “
A fast quantum mechanical algorithm for database search
,” in
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing
(
ACM
,
1996
), pp.
212
219
.
3.
P. W.
Shor
, “
Algorithms for quantum computation: Discrete logarithms and factoring
,” in
Proceedings of the 35th Annual Symposium on Foundations of Computer Science
(
IEEE
,
1994
), pp.
124
134
.
4.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
et al,
Chem. Rev.
119
,
10856
(
2019
).
5.
P.
Wittek
,
Quantum Machine Learning: What Quantum Computing Means to Data Mining
(
Academic Press
,
2014
).
6.
M.
Schuld
,
I.
Sinayskiy
, and
F.
Petruccione
,
Quantum Inf. Process.
13
,
2567
(
2014
).
7.
F.
Marquardt
,
SciPost Phys. Lect. Notes
29
,
1
44
(
2021
).
8.
D. J.
Egger
,
C.
Gambella
,
J.
Marecek
,
S.
McFaddin
,
M.
Mevissen
,
R.
Raymond
,
A.
Simonetto
,
S.
Woerner
, and
E.
Yndurain
,
IEEE Trans. Quantum Eng.
1
,
3101724
(
2020
).
9.
A.
Bouland
,
W.
van Dam
,
H.
Joorati
,
I.
Kerenidis
, and
A.
Prakash
, “
Prospects and challenges of quantum finance
,” arXiv:2011.06492 (
2020
).
10.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
,
Phys. Rev. Lett.
103
,
150502
(
2009
).
11.
A. M.
Childs
and
J.-P.
Liu
,
Commun. Math. Phys.
375
,
1427
(
2020
).
12.
A. M.
Childs
,
J.-P.
Liu
, and
A.
Ostrander
, “
High-precision quantum algorithms for partial differential equations
,” arXiv:2002.07868 (
2021
).
15.
C.
Bravo-Prieto
,
R.
LaRose
,
M.
Cerezo
,
Y.
Subasi
,
L.
Cincio
, and
P. J.
Coles
, “
Variational quantum linear solver
,” arXiv:1909.05820 (
2020
).
16.
H.-L.
Liu
,
Y.-S.
Wu
,
L.-C.
Wan
,
S.-J.
Pan
,
S.-J.
Qin
,
F.
Gao
, and
Q.-Y.
Wen
,
Phys. Rev. A
104
,
022418
(
2021
).
17.
J.-P.
Liu
,
H. Ø.
Kolden
,
H. K.
Krovi
,
N. F.
Loureiro
,
K.
Trivisa
, and
A. M.
Childs
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2026805118
(
2021
).
18.
O.
Kyriienko
,
A. E.
Paine
, and
V. E.
Elfving
,
Phys. Rev. A
103
,
052416
(
2021
).
19.
M.
Lubasch
,
J.
Joo
,
P.
Moinier
,
M.
Kiffner
, and
D.
Jaksch
,
Phys. Rev. A
101
,
010301
(
2020
).
20.
A.
Mezzacapo
,
M.
Sanz
,
L.
Lamata
,
I.
Egusquiza
,
S.
Succi
, and
E.
Solano
,
Sci. Rep.
5
,
13153
(
2015
).
21.
B. N.
Todorova
and
R.
Steijl
,
J. Comput. Phys.
409
,
109347
(
2020
).
22.
L.
Budinski
,
Quantum Inf. Process.
20
,
57
(
2021
).
23.
L.
Budinski
, “
Quantum algorithm for the Navier–Stokes equations
,” arXiv:2103.03804 (
2021
).
24.
W.
Itani
and
S.
Succi
,
Fluids
7
,
24
(
2022
).
25.
W.
Itani
,
K. R.
Sreenivasan
, and
S.
Succi
, “
Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term
,” arXiv:2304.05915 (
2023
).
26.
M. A.
Schalkers
and
M.
Möller
,
Quantum Inf. Process.
23
,
20
(
2024
).
28.
J.
Yepez
,
Int. J. Mod. Phys. C
12
,
1273
(
2001
).
29.
30.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
, 10th ed. (
Cambridge University Press
,
Cambridge, NY
,
2010
).
31.
A.
Javadi-Abhari
,
M.
Treinish
,
K.
Krsulich
,
C. J.
Wood
,
J.
Lishman
,
J.
Gacon
,
S.
Martiel
,
P. D.
Nation
,
L. S.
Bishop
,
A. W.
Cross
,
B. R.
Johnson
, and
J. M.
Gambetta
, “
Quantum computing with Qiskit
,” arXiv:2405.08810 [quant-ph] (
2024
).
32.
U.
Frisch
,
D.
d'Humières
,
B.
Hasslacher
,
P.
Lallemand
,
Y.
Pomeau
, and
J.-P.
Rivet
, “
Lattice gas hydrodynamics in two and three dimensions
,” in
Lattice Gas Methods for Partial Differential Equations
(
CRC Press
,
2019
), pp.
77
136
.
33.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
, “
Lattice-gas automata for the Navier–Stokes equation
,” in
Lattice Gas Methods for Partial Differential Equations
(
CRC Press
,
2019
), pp.
11
18
.
34.
G. R.
McNamara
and
G.
Zanetti
,
Phys. Rev. Lett.
61
,
2332
(
1988
).
35.
D. A.
Wolf-Gladrow
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
(
Springer
,
2004
).
36.
S.
Chen
and
G. D.
Doolen
,
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
37.
J.
Yepez
,
Int. J. Mod. Phys. C
12
,
1285
(
2001
).
38.
Google Quantum AI
, see https://quantumai.google/hardware/datasheet/weber.pdf for “
Quantum computer datasheet
” (
2021
).
39.
M.
Dobšíček
,
G.
Johansson
,
V.
Shumeiko
, and
G.
Wendin
,
Phys. Rev. A
76
,
030306
(
2007
).
41.
J.
Yepez
, “
Quantum computation of fluid dynamics
,” Access No. ADA437298 (
AFRL
,
1998
).
42.
D.
Perez-Garcia
,
F.
Verstraete
,
M. M.
Wolf
, and
J. I.
Cirac
, “
Matrix product state representations
,” arXiv:quant-ph/0608197 (
2006
).
43.
A. J.
McCaskey
,
E. F.
Dumitrescu
,
D.
Liakh
,
M.
Chen
,
W.
Feng
, and
T. S.
Humble
, “
Extreme-scale programming model for quantum acceleration within high performance computing
,” arXiv:1710.01794 (
2017
).
45.
A.
McCaskey
,
E.
Dumitrescu
,
M.
Chen
,
D.
Lyakh
, and
T.
Humble
,
PLoS One
13
,
e0206704
(
2018
).
46.
F. E.
Chrit
,
S.
Kocherla
,
B.
Gard
,
E. F.
Dumitrescu
,
A.
Alexeev
, and
S. H.
Bryngelson
(
2023
). “Fully quantum algorithm for lattice Boltzmann methods with application to partial differential equations,”
GitHub.
https://github.com/comp-physics/fully-QLBM
You do not currently have access to this content.