Discovering pragmatic and efficient approaches to construct ε-approximations of quantum operators such as real (imaginary) time-evolution propagators in terms of the basic quantum operations (gates) is challenging. Prior ε-approximations are invaluable, in that they enable the compilation of classical and quantum algorithm modeling of, e.g., dynamical and thermodynamic quantum properties. In parallel, symmetries are powerful tools concisely describing the fundamental laws of nature; the symmetric underpinnings of physical laws have consistently provided profound insights and substantially increased predictive power. In this work, we consider the interplay between the ε-approximate processes and the exact symmetries in a semicoherent context—where measurements occur at each logical clock cycle. We draw inspiration from Pascual Jordan's groundbreaking formulation of nonassociative, but commutative, symmetric algebraic form. Our symmetrized formalism is then applied in various domains such as quantum random walks, real-time evolutions, variational algorithm ansatzes, and efficient entanglement verification. Our work paves the way for a deeper understanding and greater appreciation of how symmetries can be used to control quantum dynamics in settings where coherence is a limited resource.

1.
A. M.
Childs
and
N.
Wiebe
,
Quantum Inf. Comput.
12
,
901
(
2012
).
2.
G. H.
Low
and
I. L.
Chuang
,
Phys. Rev. Lett.
118
,
010501
(
2017
).
3.
Z. M.
Rossi
,
V. M.
Bastidas
,
W. J.
Munro
, and
I. L.
Chuang
, “
Quantum signal processing with continuous variables
,” arXiv:2304.14383 (
2023
).
4.
G. H.
Low
and
I. L.
Chuang
,
Quantum
3
,
163
(
2019
).
5.
Z.
Hu
,
R.
Xia
, and
S.
Kais
,
Sci. Rep.
10
,
3301
(
2020
).
6.
N.
Suri
,
J.
Barreto
,
S.
Hadfield
,
N.
Wiebe
,
F.
Wudarski
, and
J.
Marshall
,
Quantum
7
,
1002
(
2023
).
7.
G. H.
Low
,
V.
Kliuchnikov
, and
N.
Wiebe
, “
Well-conditioned multiproduct Hamiltonian simulation
,” arXiv:1907.11679 (
2019
).
8.
A.
Carrera Vazquez
,
D. J.
Egger
,
D.
Ochsner
, and
S.
Woerner
,
Quantum
7
,
1067
(
2023
).
9.
G.
Rendon
,
J.
Watkins
, and
N.
Wiebe
, “
Improved accuracy for Trotter simulations using Chebyshev interpolation
,” arXiv:2212.14144 (
2022
).
10.
S.
Zhuk
,
N.
Robertson
, and
S.
Bravyi
, “
Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation
,” arXiv:2306.12569 (
2023
).
11.
J. M.
Martyn
,
Y.
Liu
,
Z. E.
Chin
, and
I. L.
Chuang
,
J. Chem. Phys.
158
,
024106
(
2023
).
12.
H. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
13.
M.
Suzuki
,
Commun. Math. Phys.
51
,
183
(
1976
).
14.
A. M.
Childs
,
Y.
Su
,
M. C.
Tran
,
N.
Wiebe
, and
S.
Zhu
,
Phys. Rev. X
11
,
011020
(
2021
).
15.
J.
Haah
,
M. B.
Hastings
,
R.
Kothari
, and
G. H.
Low
,
SIAM J. Comput.
52
,
FOCS18-250
FOCS18-284
(
2021
).
16.
17.
P.
Zeng
,
J.
Sun
,
L.
Jiang
, and
Q.
Zhao
, “
Simple and high-precision Hamiltonian simulation by compensating Trotter error with linear combination of unitary operations
,” arXiv:2212.04566 (
2022
).
18.
We use the term “integrator” for the propagator for both classical Hamiltonians57 and quantum Hamiltonians. In the latter case, it becomes the time-evolution operator.
19.
M.
Suzuki
,
J. Math. Phys.
32
,
400
(
1991
).
20.
This includes both symmetry and anti-symmetry, associated with +1 and −1 eigenvalue, respectively.
21.
P.
Jordan
, “
Über eine Klasse nichtassoziativer hyperkomplexer Algebren
,” in
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
(
Weidmannsche Buchhandlung
,
Berlin
,
1932
), Vol.
1932
, p.
569
.
22.
W.
Magnus
,
Commun. Pure Appl. Math.
7
,
649
(
1954
).
24.
A.
Bonfiglioli
and
R.
Fulci
,
Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdorff and Dynkin
, Lecture Notes in Mathematics (
Springer
,
Berlin/Heidelberg
,
2012
).
25.
S.
Chehade
,
S.
Wang
, and
Z.
Wang
,
Linear Algebra Appl.
680
,
156
169
(
2024
).
26.
E. B.
Dynkin
, “
Calculation of the coefficients in the Campbell-Hausdorff formula
,” in
Selected Papers of E. B. Dynkin With Commentary
(
American Mathematical Society
,
2000
), pp.
31
35
E. B.
Dynkin
, [
Dokl. Akad. Nauk SSSR
57
,
323
(
1947
) (in Russian)].
27.
A.
Monras
,
A.
Beige
, and
K.
Wiesner
, “
Hidden quantum Markov models and non-adaptive read-out of many-body states
,” arXiv:1002.2337 (
2011
).
28.
S.
Milz
and
K.
Modi
,
PRX Quantum
2
,
030201
(
2021
).
29.
D.
Lacroix
,
E. A.
Ruiz Guzman
, and
P.
Siwach
,
Eur. Phys. J. A
59
,
3
(
2023
).
30.
Y.
Chen
and
T.-C.
Wei
,
Phys. Rev. A
101
,
032339
(
2020
).
31.
C.
Granade
and
N.
Wiebe
, “
Using random walks for iterative phase estimation
,” arXiv:2208.04526 (
2022
).
32.
K. J.
Ferris
,
Z.
Wang
,
I.
Hen
,
A.
Kalev
,
N. T.
Bronn
, and
V.
Vlcek
, “
Exploiting maximally mixed states for spectral estimation by time evolution
,” arXiv:2312.00687 (
2023
).
33.
K.
Choi
,
D.
Lee
,
J.
Bonitati
,
Z.
Qian
, and
J.
Watkins
,
Phys. Rev. Lett.
127
,
040505
(
2021
).
34.
I.
Stetcu
,
A.
Baroni
, and
J.
Carlson
,
Phys. Rev. C
108
,
L031306
(
2023
).
35.
J.
Novotný
,
G.
Alber
, and
I.
Jex
,
J. Phys. A
42
,
282003
(
2009
).
36.
Should there be any degeneracy, a unitary transformation within the degenerate subspace can put those terms into the ρd part, while all new basis states are still energy eigenstates. In the case of pure-state density operator |ΨΨ| with |Ψ=ncn|n, this transformation can be simply done by grouping all degenerate eigenstates corresponding to the same eigenenergy into a new eigenstate with a proper normalization.
37.
D. A.
Levin
and
Y.
Peres
,
Markov Chains and Mixing Times
(
American Mathematical Society
,
Providence, RI
,
2017
).
38.
O.
Kálmán
and
T.
Kiss
,
Phys. Rev. A
97
,
032125
(
2018
).
39.
A.
Ambroladze
and
H.
Wallin
,
Ergodic Theory Dyn. Syst.
20
,
953
962
(
2000
).
40.
C.
McCarthy
,
G.
Nop
,
R.
Rastegar
, and
A.
Roitershtein
, “
Random walk on the Poincaré disk induced by a group of Möbius transformations
,” arXiv:1804.06263 (
2018
).
41.
Y.
Ge
,
J.
Tura
, and
J. I.
Cirac
,
J. Math. Phys.
60
,
022202
(
2019
).
43.
T.
Keen
,
E.
Dumitrescu
, and
Y.
Wang
, “
Quantum algorithms for ground-state preparation and Green's function calculation
,” arXiv:2112.05731 (
2021
).
44.
N.
Hatano
and
M.
Suzuki
, “
Finding exponential product formulas of higher orders
,” in
Quantum Annealing and Other Optimization Methods
, edited by
A.
Das
and
B. K.
Chakrabarti
(
Springer
,
Berlin/Heidelberg
,
2005
), pp.
37
68
.
45.
The Frobenius norm is defined as ||A||F=[Tr(AA)]1/2. Note that the operator norm is an upper bound of the Trotter error for state time evolution ||δU|Ψ||||δU|||||Ψ||=||δU||, assuming |Ψ is normalized.
46.
J.
Watrous
, “
Quantum computational complexity
,” arXiv:0804.3401 (
2008
).
47.
N.
Schuch
and
F.
Verstraete
,
Nat. Phys.
5
,
732
735
(
2009
).
48.
D.
Wecker
,
M. B.
Hastings
, and
M.
Troyer
,
Phys. Rev. A
92
,
042303
(
2015
).
49.
K.
Seki
,
T.
Shirakawa
, and
S.
Yunoki
,
Phys. Rev. A
101
,
052340
(
2020
).
51.
D.
Collins
,
N.
Gisin
,
S.
Popescu
,
D.
Roberts
, and
V.
Scarani
,
Phys. Rev. Lett.
88
,
170405
(
2002
).
52.
D.
Alsina
,
A.
Cervera
,
D.
Goyeneche
,
J. I.
Latorre
, and
K.
Życzkowski
,
Phys. Rev. A
94
,
032102
(
2016
).
53.
J. C.
Garcia-Escartin
and
P.
Chamorro-Posada
,
Phys. Rev. A
87
,
052330
(
2013
).
54.
Note that using the matrix form for Y does not mean we have chosen the computation basis for the system qubits.
55.
D.
Alsina
and
J. I.
Latorre
,
Phys. Rev. A
94
,
012314
(
2016
).
56.
S.
Gu
,
R. D.
Somma
, and
B.
Şahinoğlu
,
Quantum
5
,
577
(
2021
).
You do not currently have access to this content.