We present a quantum computing algorithm for fluid flows based on the Carleman-linearization of the Lattice Boltzmann (LB) method. First, we demonstrate the convergence of the classical Carleman procedure at moderate Reynolds numbers, namely, for Kolmogorov-like flows. Then we proceed to formulate the corresponding quantum algorithm, including the quantum circuit layout, and analyze its computational viability. We show that, at least for moderate Reynolds numbers between 10 and 100, the Carleman–LB procedure can be successfully truncated at second order, which is a very encouraging result. We also show that the quantum circuit implementing the single time-step collision operator has a fixed depth, regardless of the number of lattice sites. However, such depth is of the order of ten thousands quantum gates, meaning that quantum advantage over classical computing is not attainable today, but could be achieved in the near or mid-term future. The same goal for the multi-step version remains, however, an open topic for future research.

1.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information: 10th Anniversary Edition
(
Cambridge University Press
,
2010
).
2.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
,
Phys. Rev. Lett.
103
(
15
),
150502
(
2009
).
3.
T.
Albash
and
D. A.
Lidar
,
Rev. Mod. Phys.
90
,
015002
(
2018
).
4.
D.
Giannakis
,
A.
Ourmazd
,
P.
Pfeffer
,
J.
Schumacher
, and
J.
Slawinska
,
Phys. Rev. A
105
(
5
),
052404
(
2022
).
5.
S.
Mangini
,
A.
Marruzzo
,
M.
Piantanida
,
D.
Gerace
,
D.
Bajoni
, and
C.
Macchiavello
,
Quantum Mach. Intell.
4
(
2
),
13
(
2022
).
6.
I. M.
Georgescu
,
S.
Ashhab
, and
F.
Nori
,
Rev. Mod. Phys.
86
(
1
),
153
(
2014
).
7.
F.
Tacchino
,
A.
Chiesa
,
S.
Carretta
, and
D.
Gerace
,
Adv. Quantum Technol.
3
(
3
),
1900052
(
2020
).
8.
R. P.
Feynman
,
Int. J. Theor. Phys.
21
(
6
),
467
(
1982
).
9.
R.
Steijl
,
Quantum Algorithms for Fluid Simulations
(
IntechOpen
,
2019
).
10.
N.
Ray
,
T.
Banerjee
,
B.
Nadiga
, and
S.
Karra
, “
Towards solving the Navier-Stokes equation on quantum computers
,” arXiv:1904.09033 (
2019
).
11.
B. N.
Todorova
and
R.
Steijl
,
J. Comput. Phys.
409
,
109347
(
2020
).
12.
13.
K.
Asztalos
,
R.
Steijl
, and
R.
Maulik
, “
Reduced-order modeling on a near-term quantum computer
,” arXiv:2306.08087 (
2023
).
14.
R.
Steijl
, “
Quantum algorithms for nonlinear equations in fluid mechanics
,” in
Quantum Computing and Communications
, edited by
Y.
Zhao
(
IntechOpen
,
2022
).
15.
X.
Li
,
X.
Yin
,
N.
Wiebe
,
J.
Chun
,
G. K.
Schenter
,
M. S.
Cheung
, and
J.
Mülmenstädt
, “
Potential quantum advantage for simulation of fluid dynamics
,” arXiv:2303.16550 (
2023
).
16.
Computational Fluid Dynamics: An Introduction, edited by
J. F.
Wendt
(Springer, Berlin, 2008).
17.
S.
Succi
,
W.
Itani
,
K.
Sreenivasan
, and
R.
Steijl
,
Europhys. Lett.
144
(
1
),
10001
(
2023
).
18.
S.
Succi
,
R.
Benzi
, and
F.
Higuera
,
Physica D
47
(
1
),
219
(
1991
).
19.
R.
Benzi
,
S.
Succi
, and
M.
Vergassola
,
Phys. Rep.
222
(
3
),
145
(
1992
).
20.
S.
Succi
and
R.
Benzi
,
Physica D
69
(
3
),
327
(
1993
).
21.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method: Principles and Practice
, Graduate Texts in Physics (
Springer International Publishing
,
Cham
,
2017
).
22.
G.
Falcucci
,
G.
Amati
,
P.
Fanelli
,
V. K.
Krastev
,
G.
Polverino
,
M.
Porfiri
, and
S.
Succi
,
Nature
595
(
7868
),
537
(
2021
).
23.
S.
Succi
,
The Lattice Boltzmann Equation: For Complex States of Flowing Matter
(
Oxford University Press
,
Oxford, New York
,
2018
).
24.
S.
Bravyi
,
O.
Dial
,
J. M.
Gambetta
,
D.
Gil
, and
Z.
Nazario
,
J. Appl. Phys.
132
(
16
),
160902
(
2022
).
25.
26.
K.
Kowalski
and
W.-H.
Steeb
,
Nonlinear Dynamical Systems and Carleman Linearization
(
World Scientific
,
1991
).
27.
W.
Itani
and
S.
Succi
,
Fluids
7
(
1
),
24
(
2022
).
28.
A.
Mezzacapo
,
M.
Sanz
,
L.
Lamata
,
I. L.
Egusquiza
,
S.
Succi
, and
E.
Solano
,
Sci. Rep.
5
(
1
),
13153
(
2015
).
29.
J.-P.
Liu
,
H. Ø.
Kolden
,
H. K.
Krovi
,
N. F.
Loureiro
,
K.
Trivisa
, and
A. M.
Childs
,
Proc. Natl. Acad. Sci. U. S. A.
118
(
35
),
e2026805118
(
2021
).
30.
W.
Itani
,
K. R.
Sreenivasan
, and
S.
Succi
, “
Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term
,” arXiv:2304.05915 (
2023
).
31.
A. M.
Childs
,
R.
Kothari
, and
R. D.
Somma
,
SIAM J. Comput.
46
(
6
),
1920
(
2017
).
32.
B.
Ljubomir
,
Int. J. Quantum Inf.
20
(
2
),
2150039
(
2022
).
33.
S. B. Q.
Tran
,
F. Y.
Leong
,
Q. T.
Le
, and
D. V.
Le
,
Comput. Fluids
249
,
105701
(
2022
).
34.
S.
Succi
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Clarendon Press
,
2001
).
35.
C. K.
Aidun
and
J. R.
Clausen
,
Annu. Rev. Fluid Mech.
42
(
1
),
439
(
2010
).
36.
B.
Dünweg
and
A. J. C.
Ladd
, “
Lattice Boltzmann simulations of soft matter systems
,” in
Advanced Computer Simulation Approaches for Soft Matter Sciences III
, Advances in Polymer Science, edited by
C.
Holm
and
K.
Kremer
(
Springer
,
Berlin, Heidelberg
,
2009
), pp.
89
166
.
37.
M.
Mendoza
,
B. M.
Boghosian
,
H. J.
Herrmann
, and
S.
Succi
,
Phys. Rev. Lett.
105
(
1
),
014502
(
2010
).
38.
C.
Zoufal
,
A.
Lucchi
, and
S.
Woerner
,
npj Quantum Inf.
5
(
1
),
103
(
2019
).
39.
D. W.
Berry
,
G.
Ahokas
,
R.
Cleve
, and
B. C.
Sanders
,
Commun. Math. Phys.
270
(
2
),
359
(
2007
).
40.
S. P.
Jordan
and
P.
Wocjan
,
Phys. Rev. A
80
(
6
),
062301
(
2009
).
41.
A.
Barenco
,
C. H.
Bennett
,
R.
Cleve
,
D. P.
DiVincenzo
,
N.
Margolus
,
P.
Shor
,
T.
Sleator
,
J. A.
Smolin
, and
H.
Weinfurter
,
Phys. Rev. A
52
(
5
),
3457
(
1995
).
42.
S. S.
Tannu
and
M. K.
Qureshi
, “
Not all qubits are created equal: A case for variability-aware policies for NISQ-era quantum computers
,” in
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
(
Association for Computing Machinery
,
New York, NY
,
2019
), pp.
987
999
.
43.
V. V.
Shende
,
S. S.
Bullock
, and
I. L.
Markov
,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
25
(
6
),
1000
(
2006
).
44.
P.
Rakyta
and
Z.
Zimborás
,
Quantum
6
,
710
(
2022
).
45.
L.
Madden
and
A.
Simonetto
,
ACM Trans. Quantum Comput.
3
(
2
),
1
(
2022
).
46.
T.
Felser
,
S.
Notarnicola
, and
S.
Montangero
,
Phys. Rev. Lett.
126
(
17
),
170603
(
2021
).
47.
N. F.
Robertson
,
A.
Akhriev
,
J.
Vala
, and
S.
Zhuk
, “
Approximate quantum compiling for quantum simulation: A tensor network based approach
,” arXiv:2301.08609 (
2023
).
48.
J.
Yepez
,
J. Stat. Phys.
107
(
1
),
203
(
2002
).
You do not currently have access to this content.