We investigate the ground-state properties of N bosons with attractive zero-range interactions characterized by the scattering length a > 0 and confined to the surface of a sphere of radius R. We present the analytic solution of the problem for N = 2, mean-field analysis for N , and exact diffusion Monte Carlo results for intermediate N. For finite N, we observe a smooth crossover from the uniform state in the limit a / R 1 (weak attraction) to a localized state at small a/R (strong attraction). With increasing N, this crossover narrows down to a discontinuous transition from the uniform state to a soliton of size R / N. The two states are separated by an energy barrier, tunneling under which is exponentially suppressed at large N. The system behavior is marked by a peculiar competition between space-curvature effects and beyond-mean-field terms, both breaking the scaling invariance of a two-dimensional mean-field theory.

1.
R. Y.
Chiao
,
E.
Garmire
, and
C. H.
Townes
,
Phys. Rev. Lett.
13
,
479
(
1964
).
2.
B.
Bakkali-Hassani
,
C.
Maury
,
Y.-Q.
Zou
,
É.
Le Cerf
,
R.
Saint-Jalm
,
P. C. M.
Castilho
,
S.
Nascimbene
,
J.
Dalibard
, and
J.
Beugnon
,
Phys. Rev. Lett.
127
,
023603
(
2021
).
3.
C.-A.
Chen
and
C.-L.
Hung
,
Phys. Rev. Lett.
127
,
023604
(
2021
).
4.
S. N.
Vlasov
,
V. A.
Petrishchev
, and
V. I.
Talanov
,
Izv. Vyssh. Uchebn. Zaved., Radiofiz.
14
,
1353
(
1971
).
5.
L. P.
Pitaevskii
,
Phys. Lett. A
221
,
14
(
1996
).
6.
L. P.
Pitaevskii
and
A.
Rosch
,
Phys. Rev. A
55
,
R853
(
1997
).
7.
B.
Bakkali-Hassani
and
J.
Dalibard
, “
Townes soliton and beyond: Non-miscible Bose mixtures in 2D
,” in
Proceedings of the International School of Physics “Enrico Fermi,” Course 211 - Quantum Mixtures with Ultra-Cold Atoms
,
2022
.
8.
H.-W.
Hammer
and
D. T.
Son
,
Phys. Rev. Lett.
93
,
250408
(
2004
).
9.
L. W.
Bruch
and
J. A.
Tjon
,
Phys. Rev. A
19
,
425
(
1979
).
10.
S. K.
Adhikari
,
A.
Delfino
,
T.
Frederico
,
I. D.
Goldman
, and
L.
Tomio
,
Phys. Rev. A
37
,
3666
(
1988
).
11.
E.
Nielsen
,
D. V.
Fedorov
, and
A. S.
Jensen
,
Phys. Rev. A
56
,
3287
(
1997
).
12.
E.
Nielsen
,
D. V.
Fedorov
, and
A. S.
Jensen
,
Few-Body Syst.
27
,
15
(
1999
).
13.
I. V.
Brodsky
,
M. Y.
Kagan
,
A. V.
Klaptsov
,
R.
Combescot
, and
X.
Leyronas
,
Phys. Rev. A
73
,
032724
(
2006
).
14.
O. I.
Kartavtsev
and
A. V.
Malykh
,
Phys. Rev. A
74
,
042506
(
2006
).
15.
B.
Bazak
and
D. S.
Petrov
,
New J. Phys.
20
,
023045
(
2018
).
16.
L. D.
Carr
,
C. W.
Clark
, and
W. P.
Reinhardt
,
Phys. Rev. A
62
,
063611
(
2000
).
17.
R.
Kanamoto
,
H.
Saito
, and
M.
Ueda
,
Phys. Rev. A
67
,
013608
(
2003
).
18.
R. A.
Carollo
,
D. C.
Aveline
,
B.
Rhyno
,
S.
Vishveshwara
,
C.
Lannert
,
J. D.
Murphree
,
E. R.
Elliott
,
J. R.
Williams
,
R. J.
Thompson
et al,
Nature
606
,
281
(
2022
).
19.
F.
Jia
,
Z.
Huang
,
L.
Qiu
,
R.
Zhou
,
Y.
Yan
, and
D.
Wang
,
Phys. Rev. Lett.
129
,
243402
(
2022
).
20.
Y.
Guo
,
E.
Mercado Gutierrez
,
D.
Rey
,
T.
Badr
,
A.
Perrin
,
L.
Longchambon
,
V. S.
Bagnato
,
H.
Perrin
, and
R.
Dubessy
,
New J. Phys.
24
,
093040
(
2022
).
21.
A.
Tononi
and
L.
Salasnich
,
Nat. Rev. Phys.
5
,
398
(
2023
).
22.
L.
Amico
,
D.
Anderson
,
M.
Boshier
,
J.-P.
Brantut
,
L.-C.
Kwek
,
A.
Minguzzi
, and
W.
von Klitzing
,
Rev. Mod. Phys.
94
,
041001
(
2022
).
23.
S.
Prestipino
and
P. V.
Giaquinta
,
Phys. Rev. A
99
,
063619
(
2019
).
24.
A.
Tononi
and
L.
Salasnich
,
Phys. Rev. Lett.
123
,
160403
(
2019
).
25.
C.
Mora
and
Y.
Castin
,
Phys. Rev. A
67
,
053615
(
2003
).
26.
We note that small g 1 / N implies exponentially large a. This peculiarity of the two-dimensional scattering is usually not a problem since most interaction-related physical observables depend on ln a. Exponentially large a is thus not unusual. For instance, for low-energy quasi-two-dimensional collisions, the effective two-dimensional scattering length a l 0 exp ( π / 2 l 0 / a 3 D ) is exponentially large when the ratio of the three-dimensional scattering length a 3 D < 0 to the confinement oscillator length l0 is (moderately) small, see
D. S.
Petrov
and
G. V.
Shlyapnikov
,
Phys. Rev. A
64
,
012706
(
2001
).
27.
A.
Pricoupenko
and
D. S.
Petrov
,
Phys. Rev. A
103
,
033326
(
2021
).
28.
References 8 and 15 implicitly assume without verification that the terms o(N) in Eqs. (9) and (10) are constants. However, the behavior o ( N ) = ln N cannot be excluded, making Eq. (11) nontrivial. We thank one of the reviewers for raising the concern.
29.
J.
Boronat
and
J.
Casulleras
,
Phys. Rev. B
49
,
8920
(
1994
).
30.
P. A.
Whitlock
,
D. M.
Ceperley
,
G. V.
Chester
, and
M. H.
Kalos
,
Phys. Rev. B
19
,
5598
(
1979
).
31.
M.
Ciardi
,
F.
Cinti
,
G.
Pellicane
, and
S.
Prestipino
,
Phys. Rev. Lett.
132
,
026001
(
2024
).
32.
A possible way of solving this tunneling problem is by using the instanton approach, see
J. A.
Freire
and
D. P.
Arovas
,
Phys. Rev. A
59
,
1461
(
1999
).
You do not currently have access to this content.