The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir–Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.

1.
Y.
Fukuda
et al
(Super-Kamiokande Collaboration)
,
Phys. Rev. Lett.
81
,
1562
(
1998
).
2.
H.-K.
Proto-Collaboration
and
K.
Abe
et al, “
Hyper-Kamiokande design report
,” arXiv:1805.04163 (
2018
).
3.
R.
Acciarri
et al (
DUNE Collaboration),
Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE) conceptual design report volume 2: The physics program for dune at LBNF
,”
Report No. FERMILAB-DESIGN-2016-03
,
2015
.
4.
M.
Aker
et al
(KATRIN Collaboration)
,
Phys. Rev. Lett.
123
,
221802
(
2019
).
5.
M.
Agostini
et al
(GERDA Collaboration)
,
Phys. Rev. Lett.
120
,
132503
(
2018
).
6.
D. Q.
Adams
et al
(CUORE Collaboration)
,
Phys. Rev. Lett.
124
,
122501
(
2020
).
7.
J.
Bernabeu
,
A.
De Rujula
, and
C.
Jarlskog
,
Nucl. Phys. B
223
,
15
(
1983
).
8.
J.
Bernabeu
and
A.
Segarra
,
J. High Energy Phys.
2018
,
17
.
9.
A.
Segarra
and
J.
Bernabéu
,
Phys. Rev. D
101
,
093004
(
2020
).
10.
B.
Follin
,
L.
Knox
,
M.
Millea
, and
Z.
Pan
,
Phys. Rev. Lett.
115
,
091301
(
2015
).
11.
D.
Dinh
,
S.
Petcov
,
N.
Sasao
,
M.
Tanaka
, and
M.
Yoshimura
,
Phys. Lett. B
719
,
154
(
2013
).
12.
13.
M.
Ghosh
,
Y.
Grossman
, and
W.
Tangarife
,
Phys. Rev. D
101
,
116006
(
2020
).
14.
D.
DeMille
,
J. M.
Doyle
, and
A. O.
Sushkov
,
Science
357
,
990
(
2017
).
15.
V. A.
Dzuba
,
V. V.
Flambaum
,
P.
Munro-Laylim
, and
Y. V.
Stadnik
,
Phys. Rev. Lett.
129
,
239901
(
2022
).
16.
A.
Laliotis
,
B.-S.
Lu
,
M.
Ducloy
, and
D.
Wilkowski
,
AVS Quantum Sci.
3
,
043501
(
2021
).
17.
H.
Yukawa
,
Prog. Theor. Phys. Suppl.
1
,
1
10
(
1955
).
18.
A.
Costantino
and
S.
Fichet
,
J. High Energy Phys.
2020
,
122
.
19.
C. I.
Sukenik
,
M. G.
Boshier
,
D.
Cho
,
V.
Sandoghdar
, and
E. A.
Hinds
,
Phys. Rev. Lett.
70
,
560
(
1993
).
20.
T.
Jenke
,
P.
Geltenbort
,
H.
Lemmel
, and
H.
Abele
,
Nat. Phys.
7
,
468
(
2011
).
21.
D. M.
Harber
,
J. M.
Obrecht
,
J. M.
McGuirk
, and
E. A.
Cornell
,
Phys. Rev. A
72
,
033610
(
2005
).
22.
X.
Alauze
,
A.
Bonnin
,
C.
Solaro
, and
F. P. D.
Santos
,
New J. Phys.
20
,
083014
(
2018
).
23.
R. H.
Parker
,
C.
Yu
,
W.
Zhong
,
B.
Estey
, and
H.
Müller
,
Science
360
,
191
(
2018
).
24.
R.
Szmuk
,
V.
Dugrain
,
W.
Maineult
,
J.
Reichel
, and
P.
Rosenbusch
,
Phys. Rev. A
92
,
012106
(
2015
).
25.
J.
Czochralski
,
Z. Phys. Chem.
92U
,
219
(
1918
).
26.
S. G.
Singh
,
D. G.
Desai
,
A. K.
Singh
,
S.
Sen
,
S. C.
Gadkari
, and
S. K.
Gupta
,
AIP Conf. Proc.
1447
,
1091
1092
(
2012
).
27.
W.
Lu
,
D.
Wang
, and
L.
Chen
,
Nano Lett.
7
,
2729
(
2007
).
28.
H.-P.
Lan
,
L.-H.
Ye
,
S.
Zhang
, and
L.-M.
Peng
,
Appl. Phys. Lett.
94
,
183110
(
2009
).
29.
J. J.
Hudson
,
M. R.
Tarbutt
,
B. E.
Sauer
, and
E. A.
Hinds
,
New J. Phys.
16
,
013005
(
2014
).
30.
T.
Kinoshita
,
T.
Wenger
, and
D. S.
Weiss
,
Science
305
,
1125
(
2004
).
31.
S.
Loriani
,
A.
Friedrich
,
C.
Ufrecht
,
F. D.
Pumpo
,
S.
Kleinert
,
S.
Abend
,
N.
Gaaloul
,
C.
Meiners
,
C.
Schubert
et al,
Sci. Adv.
5
,
eaax8966
(
2019
).
33.
I. S.
Madjarov
,
A.
Cooper
,
A. L.
Shaw
,
J. P.
Covey
,
V.
Schkolnik
,
T. H.
Yoon
,
J. R.
Williams
, and
M.
Endres
,
Phys. Rev. X
9
,
041052
(
2019
).
34.
W. S.
Bakr
,
J. I.
Gillen
,
A.
Peng
,
S.
Fölling
, and
M.
Greiner
,
Nature
462
,
74
(
2009
).
35.
G. P.
Greve
,
C.
Luo
,
B.
Wu
, and
J. K.
Thompson
,
Nature
610
,
472
(
2022
).
36.
T.
Bothwell
,
C. J.
Kennedy
,
A.
Aeppli
,
D.
Kedar
,
J. M.
Robinson
,
E.
Oelker
,
A.
Staron
, and
J.
Ye
,
Nature
602
,
420
(
2022
).
37.
H.
Kim
,
K.
Krzyzanowska
,
K. C.
Henderson
,
C.
Ryu
,
E.
Timmermans
, and
M.
Boshier
, “
One second interrogation time in a 200 round-trip waveguide atom interferometer
,” arXiv:2201.11888 (
2022
).
38.
I. S.
Madjarov
,
J. P.
Covey
,
A. L.
Shaw
,
J.
Choi
,
A.
Kale
,
A.
Cooper
,
H.
Pichler
,
V.
Schkolnik
,
J. R.
Williams
et al,
Nat. Phys.
16
,
857
(
2020
).
39.
G. E.
Marti
,
R. B.
Hutson
,
A.
Goban
,
S. L.
Campbell
,
N.
Poli
, and
J.
Ye
,
Phys. Rev. Lett.
120
,
103201
(
2018
).
You do not currently have access to this content.