We establish a general implementation-independent approach to assess the potential advantage of using highly entangled quantum states between the initial and final states of the charging protocol to enhance the maximum charging power of quantum batteries. It is shown that the impact of entanglement on power can be separated from both the global quantum speed limit associated with an optimal choice of driving Hamiltonian and the energy gap of the batteries. We then demonstrate that the quantum state advantage of battery charging, defined as the power obtainable for given quantum speed limit and battery energy gap, is not an entanglement monotone. A striking example we provide is that, counterintuitively, independent thermalization of the local batteries, completely destroying any entanglement, can lead to larger charging power than that of the initial maximally entangled state. Highly entangled states can thus also be potentially disadvantageous when compared to product states. We also demonstrate that taking the considerable effort of producing highly entangled states, such as W or k-locally entangled states, is not sufficient to obtain quantum-enhanced scaling behavior with the number of battery cells. Finally, we perform an explicit computation for a Sachdev–Ye–Kitaev battery charger to demonstrate that the quantum state advantage allows the instantaneous power to exceed its classical bound.

3.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Science
306
,
1330
(
2004
).
4.
D.
Braun
,
G.
Adesso
,
F.
Benatti
,
R.
Floreanini
,
U.
Marzolino
,
M. W.
Mitchell
, and
S.
Pirandola
,
Rev. Mod. Phys.
90
,
035006
(
2018
).
5.
The LIGO Scientific Collaboration
,
Nat. Phys.
7
,
962
(
2011
).
6.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
,
Rev. Mod. Phys.
74
,
145
(
2002
).
7.
N.
Gisin
and
R.
Thew
,
Nat. Photonics
1
,
165
(
2007
).
9.
F. C.
Binder
,
S.
Vinjanampathy
,
K.
Modi
, and
J.
Goold
,
New J. Phys.
17
,
075015
(
2015
).
10.
F.
Campaioli
,
F. A.
Pollock
,
F. C.
Binder
,
L.
Céleri
,
J.
Goold
,
S.
Vinjanampathy
, and
K.
Modi
,
Phys. Rev. Lett.
118
,
150601
(
2017
).
11.
F.
Campaioli
,
F. A.
Pollock
, and
S.
Vinjanampathy
, “
Quantum batteries
,” in
Fundamental Theories of Physics
(
Springer International Publishing
,
2018
), pp.
207
.
12.
J.
Carrasco
,
J. R.
Maze
,
C.
Hermann-Avigliano
, and
F.
Barra
,
Phys. Rev. E
105
,
064119
(
2022
).
13.
D.
Rossini
,
G. M.
Andolina
,
D.
Rosa
,
M.
Carrega
, and
M.
Polini
,
Phys. Rev. Lett.
125
,
236402
(
2020
).
14.
J.-Y.
Gyhm
,
D.
Šafránek
, and
D.
Rosa
,
Phys. Rev. Lett.
128
,
140501
(
2022
).
15.
R.
Alicki
and
M.
Fannes
,
Phys. Rev. E
87
,
042123
(
2013
).
16.
K. V.
Hovhannisyan
,
M.
Perarnau-Llobet
,
M.
Huber
, and
A.
Acín
,
Phys. Rev. Lett.
111
,
240401
(
2013
).
17.
L.
Pedro García-Pintos
,
A.
Hamma
, and
A.
del Campo
,
Phys. Rev. Lett.
125
,
040601
(
2020
).
19.
H.-L.
Shi
,
S.
Ding
,
Q.-K.
Wan
,
X.-H.
Wang
, and
W.-L.
Yang
,
Phys. Rev. Lett.
129
,
130602
(
2022
).
20.
D.
Šafránek
,
D.
Rosa
, and
F. C.
Binder
,
Phys. Rev. Lett.
130
,
210401
(
2023
).
21.
S.
Bhattacharjee
and
A.
Dutta
,
Eur. Phys. J. B
94
,
239
(
2021
).
22.
J. Q.
Quach
et al,
Sci. Adv.
8
,
eabk3160
(
2022
).
23.
C.-K.
Hu
et al,
Quantum Sci. Technol.
7
,
045018
(
2022
).
24.
J.
Joshi
and
T. S.
Mahesh
,
Phys. Rev. A
106
,
042601
(
2022
).
25.
C.
Cruz
,
M. F.
Anka
,
M. S.
Reis
,
R.
Bachelard
, and
A. C.
Santos
,
Quantum Sci. Technol.
7
,
025020
(
2022
).
26.
G. M.
Andolina
,
M.
Keck
,
A.
Mari
,
V.
Giovannetti
, and
M.
Polini
,
Phys. Rev. B
99
,
205437
(
2019
).
27.
D.
Ferraro
,
M.
Campisi
,
G. M.
Andolina
,
V.
Pellegrini
, and
M.
Polini
,
Phys. Rev. Lett.
120
,
117702
(
2018
).
28.
S.
Julià-Farré
,
T.
Salamon
,
A.
Riera
,
M. N.
Bera
, and
M.
Lewenstein
,
Phys. Rev. Res.
2
,
023113
(
2020
).
29.
F. H.
Kamin
,
F. T.
Tabesh
,
S.
Salimi
, and
A. C.
Santos
,
Phys. Rev. E
102
,
052109
(
2020
).
30.
T. P.
Le
,
J.
Levinsen
,
K.
Modi
,
M. M.
Parish
, and
F. A.
Pollock
,
Phys. Rev. A
97
,
022106
(
2018
).
31.
O.
Gühne
,
P.
Hyllus
,
O.
Gittsovich
, and
J.
Eisert
,
Phys. Rev. Lett.
99
,
130504
(
2007
).
32.
M.
Li
,
S.-M.
Fei
, and
Z.-X.
Wang
,
J. Phys. A
41
,
202002
(
2008
).
33.
O.
Gittsovich
and
O.
Gühne
,
Phys. Rev. A
81
,
032333
(
2010
).
34.
S.
Hassani
,
Mathematical Physics: A Modern Introduction to Its Foundations
(
Springer International Publishing
,
2013
).
35.
S.
Deffner
and
S.
Campbell
,
J. Phys. A
50
,
453001
(
2017
).
36.
M. A.
Nielsen
,
Phys. Rev. Lett.
83
,
436
(
1999
).
37.
C. H.
Bennett
,
D. P.
DiVincenzo
,
C. A.
Fuchs
,
T.
Mor
,
E.
Rains
,
P. W.
Shor
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. A
59
,
1070
(
1999
).
39.
G.
Vidal
and
R. F.
Werner
,
Phys. Rev. A
65
,
032314
(
2002
).
40.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2007
).
41.
W.
Dür
,
G.
Vidal
, and
J. I.
Cirac
,
Phys. Rev. A
62
,
062314
(
2000
).
42.
D.
Chowdhury
,
A.
Georges
,
O.
Parcollet
, and
S.
Sachdev
,
Rev. Mod. Phys.
94
,
035004
(
2022
).
43.
We conjecture in this regard that the asymptotics of the bound (solid blue line in Fig. 3) apparently not reaching unity is a finite N effect (N = 12 in our simulations).
44.
H.
Ollivier
and
W. H.
Zurek
,
Phys. Rev. Lett.
88
,
017901
(
2001
).
45.
G.
Adesso
,
T. R.
Bromley
, and
M.
Cianciaruso
,
J. Phys. A
49
,
473001
(
2016
).
46.
B.
Kobrin
,
Z.
Yang
,
G. D.
Kahanamoku-Meyer
,
C. T.
Olund
,
J. E.
Moore
,
D.
Stanford
, and
N. Y.
Yao
,
Phys. Rev. Lett.
126
,
030602
(
2021
).
You do not currently have access to this content.