Single molecules trapped in the solid state at liquid helium temperatures are promising quantum emitters for the development of quantum technologies owing to their remarkable photostability and their lifetime-limited optical coherence time of the order of 10 ns. The coherent preparation of their electronic state requires resonant excitation with a Rabi period much shorter than their optical coherence time. Sculpting the optical excitation with sharp edges and a high on–off intensity ratio (∼3  × 105) from a single-frequency laser beam, we demonstrate sub-nanosecond drive of a single dibenzanthanthrene molecule embedded in a naphthalene matrix at 3.2 K, over more than 17 Rabi periods. With pulses tailored for a half-Rabi period, the electronic excited state is prepared with fidelity as high as 0.97. Using single-molecule Ramsey spectroscopy, we prove up to 5 K that the optical coherence lifetime remains at its fundamental upper limit set by twice the excited-state lifetime, making single molecules suitable for quantum bit manipulations under standard cryogen-free cooling technologies.

4.
M. W.
Day
et al,
Phys. Rev. Lett.
128
,
203603
(
2022
).
7.
D.
Press
,
T. D.
Ladd
,
B.
Zhang
, and
Y.
Yamamoto
,
Nature
456
,
218
(
2008
).
8.
9.
T.
Basché
,
S.
Kummer
, and
C.
Bräuchle
,
Nature
373
,
132
(
1995
).
10.
P.
Tamarat
,
A.
Maali
,
B.
Lounis
, and
M.
Orrit
,
J. Phys. Chem. A
104
,
1
(
2000
).
11.
T.
Basché
,
W. E.
Moerner
,
M.
Orrit
, and
H.
Talon
,
Phys. Rev. Lett.
69
,
1516
(
1992
).
12.
J.-B.
Trebbia
,
P.
Tamarat
, and
B.
Lounis
,
Phys. Rev. A
82
,
063803
(
2010
).
13.
R.
Lettow
et al,
Phys. Rev. Lett.
104
,
253
(
2010
).
14.
P.
Lombardi
et al,
Appl. Phys. Lett.
118
,
204002
(
2021
).
15.
C.
Brunel
,
B.
Lounis
,
P.
Tamarat
, and
M.
Orrit
,
Phys. Rev. Lett.
83
,
2722
(
1999
).
16.
J. B.
Trebbia
,
H.
Ruf
,
P.
Tamarat
, and
B.
Lounis
,
Opt. Express
17
,
23986
(
2009
).
17.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: Public-key distribution and coin tossing
,” in
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
, Bangalore, India (
IEEE Press
,
1984
), pp.
175
179
.
19.
20.
21.
C.
Ciancico
et al,
ACS Photonics
6
,
3120
(
2019
).
22.
M.
Colautti
et al,
Adv. Quantum Technol.
3
,
2000004
(
2020
).
23.
24.
I.
Gerhardt
et al,
Phys. Rev. A
79
,
011402(R)
(
2009
).
25.
M.
Rezai
,
J.
Wrachtrup
, and
I.
Gerhardt
,
New J. Phys.
21
,
045005
(
2019
).
27.
J. N.
Becker
,
J.
Görlitz
,
C.
Arend
,
M.
Markham
, and
C.
Becher
,
Nat. Commun.
7
,
13512
(
2016
).
28.
29.
Y.
Wang
,
V.
Bushmakin
,
G. A.
Stein
,
A. W.
Schell
, and
I.
Gerhardt
,
Optica
9
,
374
(
2022
).
30.
F.
Jelezko
,
B.
Lounis
, and
M.
Orrit
,
J. Chem. Phys.
107
,
1692
(
1997
).
31.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Wiley
,
1975
).
32.
S.
Stufler
,
P.
Ester
,
A.
Zrenner
, and
M.
Bichler
,
Phys. Rev. Lett.
96
,
037402
(
2006
).
35.
J. B.
Trebbia
,
Q.
Deplano
,
P.
Tamarat
, and
B.
Lounis
,
Nat. Commun.
13
,
2962
(
2022
).
36.
Y.-X.
Zhang
and
K.
Mølmer
,
Phys. Rev. Lett.
122
,
203605
(
2019
).
37.
P. O.
Guimond
,
A.
Grankin
,
D. V.
Vasilyev
,
B.
Vermersch
, and
P.
Zoller
,
Phys. Rev. Lett.
122
,
093601
(
2019
).

Supplementary Material

You do not currently have access to this content.