Distinguishing non-local orders, including global and topological orders of states through solely local operations and classical communications (LOCC), is a highly non-trivial and challenging task since the topology of states is determined by the global characteristics of the many-body system, such as the system's symmetry and the topological space it is based on. Here, we report that we reproduced the phase diagram of Ising model and symmetry protected topological phases using the quantum energy teleportation protocol, which foresees non-trivial energy transfer between remote observers using the entanglement nature of the ground state and LOCC. The model we use includes the Haldane model, the AKLT model, and the Kitaev model. Therefore, our method paves a new general experimental framework to determine and quantify phase transitions in various condensed matter physics and statistical mechanics.

1.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
2.
H. C.
Po
,
A.
Vishwanath
, and
H.
Watanabe
,
Nat. Commun.
8
,
50
(
2017
).
3.
E.
Khalaf
,
H. C.
Po
,
A.
Vishwanath
, and
H.
Watanabe
,
Phys. Rev. X
8
,
031070
(
2018
).
4.
H.
Watanabe
,
H. C.
Po
, and
A.
Vishwanath
,
Sci. Adv.
4
,
eaat8685
(
2018
).
5.
C.-K.
Chiu
,
J. C. Y.
Teo
,
A. P.
Schnyder
, and
S.
Ryu
,
Rev. Mod. Phys.
88
,
035005
(
2016
).
6.
J.
Kruthoff
,
J.
de Boer
,
J.
van Wezel
,
C. L.
Kane
, and
R.-J.
Slager
,
Phys. Rev. X
7
,
041069
(
2017
).
7.
F. D. M.
Haldane
,
Phys. Rev. Lett.
61
,
2015
(
1988
).
8.
I.
Affleck
,
T.
Kennedy
,
E. H.
Lieb
, and
H.
Tasaki
,
Phys. Rev. Lett.
59
,
799
(
1987
).
10.
F.
Pollmann
,
A. M.
Turner
,
E.
Berg
, and
M.
Oshikawa
,
Phys. Rev. B
81
,
064439
(
2010
).
11.
F.
Pollmann
,
E.
Berg
,
A. M.
Turner
, and
M.
Oshikawa
,
Phys. Rev. B
85
,
075125
(
2012
).
12.
A. M.
Turner
,
F.
Pollmann
, and
E.
Berg
,
Phys. Rev. B
83
,
075102
(
2011
).
13.
N. A.
Sinitsyn
,
Q.
Niu
,
J.
Sinova
, and
K.
Nomura
,
Phys. Rev. B
72
,
045346
(
2005
).
14.
T.-C.
Wei
,
I.
Affleck
, and
R.
Raussendorf
,
Phys. Rev. Lett.
106
,
070501
(
2011
).
15.
T.
Ando
,
J. Phys. Soc. Jpn.
52
,
1740
1749
(
1983
).
16.
Y.
Matsuki
and
K.
Ikeda
,
J. Phys. Commun.
3
,
055003
(
2019
).
17.
Y.
Matsuki
,
K.
Ikeda
, and
M.
Koshino
,
Phys. Rev. B
104
,
035305
(
2021
).
18.
V.
Juričić
,
A.
Mesaros
,
R.-J.
Slager
, and
J.
Zaanen
,
Phys. Rev. Lett.
108
,
106403
(
2012
).
19.
R.-J.
Slager
,
A.
Mesaros
,
V.
Juričić
, and
J.
Zaanen
,
Phys. Rev. B
90
,
241403
(
2014
).
20.
H.
Zheng
,
A.
Dua
, and
L.
Jiang
,
Phys. Rev. B
92
,
245139
(
2015
).
22.
23.
J.
Maldacena
,
Int. J. Theor. Phys.
38
,
1113
(
1999
).
24.
A.
Strominger
,
J. High Energy Phys.
2001
,
034
.
25.
Y.
Hikida
,
T.
Nishioka
,
T.
Takayanagi
, and
Y.
Taki
,
J. High Energy Phys.
2022
,
129
.
26.
Y.
Hikida
,
T.
Nishioka
,
T.
Takayanagi
, and
Y.
Taki
,
Phys. Rev. Lett.
129
,
041601
(
2022
).
27.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
,
Phys. Rev. Lett.
70
,
1895
(
1993
).
28.
A.
Furusawa
,
J. L.
Sørensen
,
S. L.
Braunstein
,
C. A.
Fuchs
,
H. J.
Kimble
, and
E. S.
Polzik
,
Science
282
,
706
(
1998
).
29.
S.
Takeda
,
T.
Mizuta
,
M.
Fuwa
,
P.
Van Loock
, and
A.
Furusawa
,
Nature
500
,
315
(
2013
).
30.
S.
Pirandola
,
J.
Eisert
,
C.
Weedbrook
,
A.
Furusawa
, and
S. L.
Braunstein
,
Nat. Photonics
9
,
641
(
2015
).
31.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: Public key distribution and coin tossing
,” arXiv:2003.06557 (
2020
).
32.
E.
Farhi
,
D.
Gosset
,
A.
Hassidim
,
A.
Lutomirski
, and
P.
Shor
, “
Quantum money from knots
,” in
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
,
2012
.
33.
S.
Aaronson
, “
Quantum copy-protection and quantum money
,” in
24th Annual IEEE Conference on Computational Complexity
(
IEEE
,
2009
), pp.
229
242
.
34.
K.
Ikeda
, “
Qbitcoin: a peer-to-peer quantum cash system
,” in
Intelligent Computing
(
Springer International Publishing
,
Cham
,
2019
), pp.
763
771
.
35.
K.
Ikeda
, “
Security and privacy of blockchain and quantum computation
,” in
Blockchain Technology: Platforms, Tools and Use Cases
, Advances in Computers Vol.
111
, edited by
P.
Raj
and
G. C.
Deka
(
Elsevier
,
2018
), Chap. 7, pp.
199
228
.
36.
K.
Ikeda
and
A.
Lowe
, “
Quantum interactive proofs using quantum energy teleportation
,” arXiv:2306.08242 (
2023
).
38.
M.
Hotta
,
J. Phys. Soc. Jpn.
78
,
034001
(
2009
).
39.
J.
Trevison
and
M.
Hotta
,
J. Phys. A
48
,
175302
(
2015
).
40.
G.
Yusa
,
W.
Izumida
, and
M.
Hotta
,
Phys. Rev. A
84
,
032336
(
2011
).
42.
K.
Ikeda
, “
Long-range quantum energy teleportation and distribution on a hyperbolic quantum network
,” arXiv:2301.11884 (
2023
).
45.
R.
Verresen
,
R.
Moessner
, and
F.
Pollmann
,
Phys. Rev. B
96
,
165124
(
2017
).
46.
M.
Hotta
, “
Quantum energy teleportation: An introductory review
,” arXiv:1101.3954 (
2011
).
48.
S.
Ito
and
T.
Sagawa
,
Nat. Commun.
6
,
7498
(
2015
).
50.
K.
Ikeda
, see https://github.com/IKEDAKAZUKI/Quantum-Energy-Teleportation.git
Quantum energy teleportation with quantum computers
” (
2023
).
51.
J.
Maciejko
and
S.
Rayan
,
Sci. Adv.
7
,
eabe9170
(
2021
).
52.
J.
Maciejko
and
S.
Rayan
,
Proc. Natl. Acad. Sci.
119
,
e2116869119
(
2022
).
53.
K.
Ikeda
,
Y.
Matsuki
, and
S.
Aoki
, “
Algebra of hyperbolic band theory under magnetic field
,” arXiv:2107.10586 (
2021
).
54.
K.
Ikeda
,
S.
Aoki
, and
Y.
Matsuki
,
J. Phys.: Condens. Matter
33
,
485602
(
2021
).
55.
E.
Kienzle
and
S.
Rayan
,
Adv. Math.
409
,
108664
(
2022
).
56.
A. J.
Kollár
,
M.
Fitzpatrick
, and
A. A.
Houck
,
Nature
571
,
45
(
2019
).
You do not currently have access to this content.