A Michelson-type interferometer with two-mode squeezed coherent state input is considered. Such an interferometer has a better phase sensitivity over the shot-noise limit by a factor of e 2 r, where r is the squeezing parameter [Phys. Rev. A 102, 022614 (2020)]. We show that when photon loss and noise in the two arms are asymmetric, an optimal choice of the squeezing angle can allow improvement in phase sensitivity without any increase in input or pump power. In particular, when loss occurs only in one arm of the interferometer, we can have improvement in phase sensitivity for photon loss up to 80%. Hence, a significant improvement can be made in several applications such as LiDAR, gyroscopes, and measuring refractive indices of highly absorptive/reflective materials.

1.
M.
Zwierz
,
C. A.
Pérez-Delgado
, and
P.
Kok
,
Phys. Rev. A
85
,
042112
(
2012
).
2.
C. M.
Caves
,
Phys. Rev. D
23
,
1693
(
1981
).
3.
L.
Pezzé
and
A.
Smerzi
,
Phys. Rev. Lett.
100
,
073601
(
2008
).
4.
K. P.
Seshadreesan
,
P. M.
Anisimov
,
H.
Lee
, and
J. P.
Dowling
,
New J. Phys.
13
,
083026
(
2011
).
5.
B. J.
Lawrie
,
P. D.
Lett
,
A. M.
Marino
, and
R. C.
Pooser
,
ACS Photonics
6
,
1307
(
2019
).
6.
B.
Yurke
,
S. L.
McCall
, and
J. R.
Klauder
,
Phys. Rev. A
33
,
4033
(
1986
).
7.
W. N.
Plick
,
J. P.
Dowling
, and
G. S.
Agarwal
,
New J. Phys.
12
,
083014
(
2010
).
8.
A. M.
Marino
,
N. V. C.
Trejo
, and
P. D.
Lett
,
Phys. Rev. A
86
,
023844
(
2012
).
9.
F.
Hudelist
,
J.
Kong
,
C.
Liu
,
J.
Jing
,
Z.
Ou
, and
W.
Zhang
,
Nat. Commun.
5
,
3049
(
2014
).
10.
P. M.
Anisimov
,
G. M.
Raterman
,
A.
Chiruvelli
,
W. N.
Plick
,
S. D.
Huver
,
H.
Lee
, and
J. P.
Dowling
,
Phys. Rev. Lett.
104
,
103602
(
2010
).
11.
H. P.
Yuen
,
Phys. Rev. Lett.
56
,
2176
(
1986
).
12.
M. J.
Holland
and
K.
Burnett
,
Phys. Rev. Lett.
71
,
1355
(
1993
).
13.
D.
Han
and
Y. S.
Kim
, “
Squeezed states as representations of symplectic groups
,” arXiv:physics/9803017 (
1998
).
14.
A.
Kuzmich
and
L.
Mandel
,
Quantum Semiclassical Opt.
10
,
493
(
1998
).
15.
D. W.
Berry
and
H. M.
Wiseman
,
Phys. Rev. Lett.
85
,
5098
(
2000
).
16.
R. A.
Campos
,
C. C.
Gerry
, and
A.
Benmoussa
,
Phys. Rev. A
68
,
023810
(
2003
).
17.
L.
Pezzé
and
A.
Smerzi
,
Phys. Rev. A
73
,
011801
(
2006
).
18.
T.-W.
Lee
,
S. D.
Huver
,
H.
Lee
,
L.
Kaplan
,
S. B.
McCracken
,
C.
Min
,
D. B.
Uskov
,
C. F.
Wildfeuer
,
G.
Veronis
et al,
Phys. Rev. A
80
,
063803
(
2009
).
19.
B. L.
Higgins
,
D. W.
Berry
,
S. D.
Bartlett
,
H. M.
Wiseman
, and
G. J.
Pryde
,
Nature
450
,
393
(
2007
).
20.
T.
Nagata
,
R.
Okamoto
,
J. L.
O'Brien
,
K.
Sasaki
, and
S.
Takeuchi
,
Science
316
,
726
(
2007
).
21.
M.
Hillery
and
L.
Mlodinow
,
Phys. Rev. A
48
,
1548
(
1993
).
22.
C.
Brif
and
A.
Mann
,
Phys. Rev. A
54
,
4505
(
1996
).
23.
H.
Lee
,
P.
Kok
, and
J. P.
Dowling
,
J. Mod. Optics
49
,
2325
(
2002
).
24.
K. J.
Resch
,
K. L.
Pregnell
,
R.
Prevedel
,
A.
Gilchrist
,
G. J.
Pryde
,
J. L.
O'Brien
, and
A. G.
White
,
Phys. Rev. Lett.
98
,
223601
(
2007
).
25.
I.
Afek
,
O.
Ambar
, and
Y.
Silberberg
,
Science
328
,
879
(
2010
).
26.
R.
Birrittella
,
J.
Mimih
, and
C. C.
Gerry
,
Phys. Rev. A
86
,
063828
(
2012
).
27.
R.
Carranza
and
C. C.
Gerry
,
J. Opt. Soc. Am. B
29
,
2581
(
2012
).
28.
H.
Zhang
,
W.
Ye
,
C.
Wei
,
Y.
Xia
,
S.
Chang
,
Z.
Liao
, and
L.
Hu
,
Phys. Rev. A
103
,
013705
(
2021
).
29.
C.
Kumar
,
Rishabh
, and
S.
Arora
,
Phys. Rev. A
105
,
052437
(
2022
).
30.
X.-Q.
Xiao
,
E. S.
Matekole
,
J.
Zhao
,
G.
Zeng
,
J. P.
Dowling
, and
H.
Lee
,
Phys. Rev. A
102
,
022614
(
2020
).
31.
C.
Weedbrook
,
S.
Pirandola
,
R.
García-Patrón
,
N. J.
Cerf
,
T. C.
Ralph
,
J. H.
Shapiro
, and
S.
Lloyd
,
Rev. Mod. Phys.
84
,
621
(
2012
).
32.
B. T.
Gard
,
Advances in Quantum Metrology: Continuous Variables in Phase Space
(
Louisiana State University and Agricultural & Mechanical College
,
2016
).
33.
B. T.
Gard
,
C.
You
,
D. K.
Mishra
,
R.
Singh
,
H.
Lee
,
T. R.
Corbitt
, and
J. P.
Dowling
,
EPJ Quantum Technol.
4
,
4
(
2017
).
You do not currently have access to this content.