Using multi-photon entangled input states, we estimate the phase uncertainty in a noiseless Mach–Zehnder interferometer using photon-counting detection. We assume a flat prior uncertainty and use Bayesian inference to construct a posterior uncertainty. By minimizing the posterior variance to get the optimal input states, we first devise an estimation and measurement strategy that yields the lowest phase uncertainty for a single measurement. N00N and Gaussian states are determined to be optimal in certain regimes. We then generalize to a sequence of repeated measurements, using non-adaptive and fully adaptive measurements. N00N and Gaussian input states are close to optimal in these cases as well, and optimal analytical formulae are developed. Using these formulae as inputs, a general scaling formula is obtained, which shows how many shots it would take on average to reduce phase uncertainty to a target level. Finally, these theoretical results are compared with a Monte Carlo simulation using frequentist inference. In both methods of inference, the local non-adaptive method is shown to be the most effective practical method to reduce phase uncertainty.

1.
M. A.
Taylor
and
W. P.
Bowen
,
Phys. Rep.
615
,
1
(
2016
).
2.
LIGO Scientific Collaboration
,
Nat. Phys.
7
,
962
(
2011
).
3.
L.
Pezzè
and
A.
Smerzi
,
Phys. Rev. Lett.
125
,
210503
(
2020
).
4.
J.
Borregaard
and
A. S.
Sørensen
,
Phys. Rev. Lett.
111
,
090801
(
2013
).
5.
C. E.
Granade
,
C.
Ferrie
,
N.
Wiebe
, and
D. G.
Cory
,
New J. Phys.
14
,
103013
(
2012
).
6.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
,
Rev. Mod. Phys.
89
,
035002
(
2017
).
7.
P. A.
Moreau
,
E.
Toninelli
,
T.
Gregory
, and
M. J.
Padgett
,
Nat. Rev. Phys.
1
(
6
),
367
(
2019
).
8.
V.
Giovannetti
,
S.
Lloyd
,
L.
Maccone
, and
J. H.
Shapiro
,
Phys. Rev. A
79
,
013827
(
2009
).
9.
E.
Polino
,
M.
Valeri
,
N.
Spagnolo
, and
F.
Sciarrino
,
AVS Quantum Sci.
2
,
024703
(
2020
).
10.
B.
Yurke
,
S. L.
McCall
, and
J. R.
Klauder
,
Phys. Rev. A
33
,
4033
(
1986
).
11.
H.
Lee
,
P.
Kok
, and
J. P.
Dowling
,
J. Mod. Opt.
49
,
2325
(
2002
).
12.
T. W.
Lee
,
S. D.
Huver
,
H.
Lee
,
L.
Kaplan
,
S. B.
McCracken
,
C.
Min
,
D. B.
Uskov
,
C. F.
Wildfeuer
,
G.
Veronis
 et al,
Phys. Rev. A
80
,
063803
(
2009
).
13.
R.
Lynch
,
Phys. Rep.
256
,
367
(
1995
).
14.
L.
Pezzè
and
A.
Smerzi
,
At. Interferom.
188
,
691
(
2014
).
15.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
,
Rev. Mod. Phys.
81
,
865
(
2009
).
16.
L.
Pezzé
and
A.
Smerzi
,
Phys. Rev. Lett.
100
,
073601
(
2008
).
17.
B. C.
Sanders
and
G. J.
Milburn
,
Phys. Rev. Lett.
75
,
2944
(
1995
).
18.
D. W.
Berry
and
H. M.
Wiseman
,
Phys. Rev. Lett.
85
,
5098
(
2000
).
19.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Phys. Rev. Lett.
96
,
010401
(
2006
).
20.
L.
Pezzé
and
A.
Smerzi
,
Phys. Rev. Lett.
102
,
100401
(
2009
).
21.
P.
Hyllus
,
W.
Laskowski
,
R.
Krischek
,
C.
Schwemmer
,
W.
Wieczorek
,
H.
Weinfurter
,
L.
Pezzé
, and
A.
Smerzi
,
Phys. Rev. A
85
,
022321
(
2012
).
22.
G.
Tóth
,
Phys. Rev. A
85
,
022322
(
2012
).
23.
S. M.
Kay
,
Fundamentals of Statistical Signal Processing: Estimation Theory
(
Pearson
,
1993
), Vol.
I
; available at https://www.pearson.com/en-us/subject-catalog/p/fundamentals-of-statistical-processing-estimation-theory-volume-1/P200000009271/9780133457117.
24.
H.
Uys
and
P.
Meystre
,
Phys. Rev. A
76
,
013804
(
2007
).
25.
U.
Dorner
,
R.
Demkowicz-Dobrzanski
,
B. J.
Smith
,
J. S.
Lundeen
,
W.
Wasilewski
,
K.
Banaszek
, and
I. A.
Walmsley
,
Phys. Rev. Lett.
102
,
040403
(
2009
).
26.
P.
Kok
,
W. J.
Munro
,
K.
Nemoto
,
T. C.
Ralph
,
J. P.
Dowling
, and
G. J.
Milburn
,
Rev. Mod. Phys.
79
,
135
(
2007
).
27.
A. M.
Smith
,
D. B.
Uskov
,
M. L.
Fanto
,
L. H.
Ying
, and
L.
Kaplan
,
J. Phys. B
45
,
185502
(
2012
).
28.
D. B.
Uskov
,
L.
Kaplan
,
A. M.
Smith
,
S. D.
Huver
, and
J. P.
Dowling
,
Phys. Rev. A
79
,
042326
(
2009
).
29.
R.
Demkowicz-Dobrzański
,
M.
Jarzyna
, and
J.
Kołodyński
,
Prog. Opt.
60
,
345
(
2015
).
30.
R.
Loudon
,
The Quantum Theory of Light
(
Oxford University Press
,
2000
), p.
438
.
31.
Y.
Zhang
,
D. B.
Uskov
, and
L.
Kaplan
, “
Optimization of lossy Mach-Zehnder interferometer with varying prior phase uncertainties using photon-counting detection
,” (unpublished).
32.
A.
Perelomov
,
Generalized Coherent States and Their Applications
(
Springer
,
Berlin/Heidelberg
,
1986
).
33.
J. J.
Bollinger
,
W. M.
Itano
,
D. J.
Wineland
, and
D. J.
Heinzen
,
Phys. Rev. A
54
,
R4649
(
1996
).
34.
J. P.
Dowling
,
Contemp. Phys.
49
,
125
(
2008
).
35.
J.
Rubio
and
J.
Dunningham
,
New J. Phys.
21
,
043037
(
2019
).
36.
J.
Rubio
and
J.
Dunningham
,
Phys. Rev. A
101
,
032114
(
2020
).
37.
J. S.
Sidhu
and
P.
Kok
,
AVS Quantum Sci.
2
,
014701
(
2020
).
You do not currently have access to this content.