CO2 capture is critical to solving global warming. Amine-based solvents are extensively used to chemically absorb CO2. Thus, it is crucial to study the chemical absorption of CO2 by amine-based solvents to better understand and optimize CO2 capture processes. Here, we use quantum computing algorithms to quantify molecular vibrational energies and reaction pathways between CO2 and a simplified amine-based solvent model—NH3. Molecular vibrational properties are important to understanding kinetics of reactions. However, the molecule size correlates with the strength of anharmonicity effect on vibrational properties, which can be challenging to address using classical computing. Quantum computing can help enhance molecular vibrational calculations by including anharmonicity. We implement a variational quantum eigensolver (VQE) algorithm in a quantum simulator to calculate ground state vibrational energies of reactants and products of the CO2 and NH3 reaction. The VQE calculations yield ground vibrational energies of CO2 and NH3 with similar accuracy to classical computing. In the presence of hardware noise, Compact Heuristic for Chemistry (CHC) ansatz with shallower circuit depth performs better than Unitary Vibrational Coupled Cluster. The “Zero Noise Extrapolation” error-mitigation approach in combination with CHC ansatz improves the vibrational calculation accuracy. Excited vibrational states are accessed with quantum equation of motion method for CO2 and NH3. Using quantum Hartree–Fock (HF) embedding algorithm to calculate electronic energies, the corresponding reaction profile compares favorably with Coupled Cluster Singles and Doubles while being more accurate than HF. Our research showcases quantum computing applications in the study of CO2 capture reactions.

1.
G.
Ortiz
,
J. E.
Gubernatis
,
E.
Knill
, and
R.
Laflamme
,
Phys. Rev. A
64
(
2
),
022319
(
2001
).
2.
H. P.
Paudel
,
M.
Syamlal
,
S. E.
Crawford
,
Y.-L.
Lee
,
R. A.
Shugayev
,
P.
Lu
,
P. R.
Ohodnicki
,
D.
Mollot
, and
Y.
Duan
,
ACS Eng. Au.
2
(
3
),
151
(
2022
).
3.
S.
Bush
,
Y.
Duan
,
B.
Gilbert
,
A.
Hussey
,
J.
Levy
,
D.
Miller
,
R.
Pooser
, and
M.
Syamlal
,
Fossil Energy Workshop on Quantum Information Science and Technology Summary Report
[
U. S. Department of Energy, National Energy Technology Laboratory (NETL)
,
Pittsburgh, PA
,
2020
].
4.
J.
Tilly
,
H.
Chen
,
S.
Cao
,
D.
Picozzi
,
K.
Setia
,
Y.
Li
,
E.
Grant
,
L.
Wossnig
,
I.
Rungger
 et al.,
Phys. Rep.
986
,
1
(
2022
).
5.
G. S.
Barron
,
B. T.
Gard
,
O. J.
Altman
,
N. J.
Mayhall
,
E.
Barnes
, and
S. E.
Economou
,
Phys. Rev. Appl.
16
(
3
),
034003
(
2021
).
6.
W. M.
Kirby
and
P. J.
Love
,
Phys. Rev. Lett.
123
(
20
),
200501
(
2019
).
7.
S.-X.
Zhang
,
Z.-Q.
Wan
,
C.-K.
Lee
,
C.-Y.
Hsieh
,
S.
Zhang
, and
H.
Yao
,
Phys. Rev. Lett.
128
(
12
),
120502
(
2022
).
8.
O.
Higgott
,
D.
Wang
, and
S.
Brierley
,
Quantum
3
,
156
(
2019
).
9.
A.
Kandala
,
A.
Mezzacapo
,
K.
Temme
,
M.
Takita
,
M.
Brink
,
J. M.
Chow
, and
J. M.
Gambetta
,
Nature
549
(
7671
),
242
(
2017
).
10.
C.
Hempel
,
C.
Maier
,
J.
Romero
,
J.
McClean
,
T.
Monz
,
H.
Shen
,
P.
Jurcevic
,
B. P.
Lanyon
,
P.
Love
 et al.,
Phys. Rev. X
8
(
3
),
031022
(
2018
).
11.
R. M.
Parrish
,
E. G.
Hohenstein
,
P. L.
McMahon
, and
T. J.
Martínez
,
Phys. Rev. Lett.
122
(
23
),
230401
(
2019
).
12.
N. H.
Stair
,
R.
Huang
, and
F. A.
Evangelista
,
J. Chem. Theory Comput.
16
(
4
),
2236
(
2020
).
13.
M.
Rossmannek
,
P. K.
Barkoutsos
,
P. J.
Ollitrault
, and
I.
Tavernelli
,
J. Chem. Phys.
154
(
11
),
114105
(
2021
).
14.
P. J.
Ollitrault
,
A.
Baiardi
,
M.
Reiher
, and
I.
Tavernelli
,
Chem. Sci.
11
(
26
),
6842
(
2020
).
15.
S.
McArdle
,
A.
Mayorov
,
X.
Shan
,
S.
Benjamin
, and
X.
Yuan
,
Chem. Sci.
10
(
22
),
5725
(
2019
).
16.
N. P. D.
Sawaya
,
T.
Menke
,
T. H.
Kyaw
,
S.
Johri
,
A.
Aspuru-Guzik
, and
G. G.
Guerreschi
,
npj Quantum Inf.
6
(
1
),
49
(
2020
).
17.
V.
Barone
,
M.
Biczysko
, and
J.
Bloino
,
Phys. Chem. Chem. Phys.
16
(
5
),
1759
(
2014
).
18.
E. L.
Sibert
,
J. Chem. Phys.
150
(
9
),
090901
(
2019
).
19.
B.
Njegic
and
M. S.
Gordon
,
J. Chem. Phys.
125
(
22
),
224102
(
2006
).
20.
T. L.
Nguyen
and
J. R.
Barker
,
J. Phys. Chem. A
114
(
10
),
3718
(
2010
).
21.
C.
Aieta
,
M.
Micciarelli
,
G.
Bertaina
, and
M.
Ceotto
,
Nat. Commun.
11
(
1
),
4348
(
2020
).
22.
N. P. D.
Sawaya
,
F.
Paesani
, and
D. P.
Tabor
,
Phys. Rev. A
104
(
6
),
062419
(
2021
).
23.
O.
Christiansen
,
J. Chem. Phys.
120
(
5
),
2140
(
2004
).
24.
P. J.
Ollitrault
,
A.
Kandala
,
C.-F.
Chen
,
P. K.
Barkoutsos
,
A.
Mezzacapo
,
M.
Pistoia
,
S.
Sheldon
,
S.
Woerner
,
J. M.
Gambetta
 et al.,
Phys. Rev. Res
2
(
4
),
043140
(
2020
).
25.
N. P. D.
Sawaya
and
J.
Huh
,
J. Phys. Chem. Lett.
10
(
13
),
3586
3591
(
2019
).
26.
J.
Gibbins
and
H.
Chalmers
,
Energy Policy
36
(
12
),
4317
(
2008
).
27.
G. T.
Rochelle
,
Science
325
(
5948
),
1652
(
2009
).
28.
K.
Temme
,
S.
Bravyi
, and
J. M.
Gambetta
,
Phys. Rev. Lett.
119
(
18
),
180509
(
2017
).
29.
G.
Aleksandrowicz
,
T.
Alexander
,
P.
Barkoutsos
,
L.
Bello
,
Y.
Ben-Haim
,
D.
Bucher
,
F. J.
Cabrera-Hernández
,
J.
Carballo-Franquis
,
A.
Chen
 et al. (
2019
). “Qiskit: An open-source framework for quantum computing,”
Zenodo
.
30.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
 et al.,
WIREs Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
31.
Q.
Sun
,
J. Comput. Chem.
36
(
22
),
1664
(
2015
).
32.
B.
Bauer
,
S.
Bravyi
,
M.
Motta
, and
G. K.-L.
Chan
,
Chem. Rev.
120
(
22
),
12685
(
2020
).
33.
W. J.
Hehre
,
R.
Ditchfield
,
R. F.
Stewart
, and
J. A.
Pople
,
J. Chem. Phys.
52
(
5
),
2769
(
1970
).
34.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
(
1–3
),
503
(
1989
).
35.
D. F.
Shanno
,
Math. Comput.
24
(
111
),
647
(
1970
).
36.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
(
1996
).
37.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys
113
(
22
),
9901
(
2000
).
38.
W.
Li
,
Z.
Huang
,
C.
Cao
,
Y.
Huang
,
Z.
Shuai
,
X.
Sun
,
J.
Sun
,
X.
Yuan
, and
D.
Lv
,
Chem. Sci.
13
(
31
),
8953
(
2022
).
39.
C.
Cao
,
J.
Hu
,
W.
Zhang
,
X.
Xu
,
D.
Chen
,
F.
Yu
,
J.
Li
,
H.-S.
Hu
,
D.
Lv
 et al.,
Phys. Rev. A
105
(
6
),
062452
(
2022
).
40.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O'Brien
,
Nat. Commun.
5
(
1
),
4213
(
2014
).
41.
J. M.
Bowman
,
Acc. Chem. Res.
19
(
7
),
202
208
(
1986
).
42.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
 et al.,
Gaussian 16, Revision C.01
(
Gaussian, Inc
.,
Wallingford, CT
,
2016
).
43.
J.
Kongsted
and
O.
Christiansen
,
J. Chem. Phys
125
(
12
),
124108
(
2006
).
44.
L.
Veis
,
J.
Višňák
,
H.
Nishizawa
,
H.
Nakai
, and
J.
Pittner
,
Int. J. Quantum Chem.
116
(
18
),
1328
(
2016
).
45.
E.
Lötstedt
,
K.
Yamanouchi
,
T.
Tsuchiya
, and
Y.
Tachikawa
,
Phys. Rev. A
103
(
6
),
062609
(
2021
).
46.
A. G.
Császár
,
I.
Simkó
,
T.
Szidarovszky
,
G. C.
Groenenboom
,
T.
Karman
, and
A.
Van Der Avoird
,
Phys. Chem. Chem. Phys.
22
(
27
),
15081
(
2020
).
47.
A. G.
Császár
,
C.
Fábri
,
T.
Szidarovszky
,
E.
Mátyus
,
T.
Furtenbacher
, and
G.
Czakó
,
Phys. Chem. Chem. Phys.
14
(
3
),
1085
(
2012
).
You do not currently have access to this content.