Bidirectional quantum teleportation is a fundamental protocol for exchanging quantum information between two parties. Specifically, two individuals make use of a shared resource state as well as local operations and classical communication (LOCC) to swap quantum states. In this work, we concisely highlight the contributions of our companion paper [A. U. Siddiqui and M. M. Wilde, arXiv:2010.07905 (2020)]. We develop two different ways of quantifying the error of nonideal bidirectional teleportation by means of the normalized diamond distance and the channel infidelity. We then establish that the values given by both metrics are equal for this task. Additionally, by relaxing the set of operations allowed from LOCC to those that completely preserve the positivity of the partial transpose, we obtain semidefinite programing lower bounds on the error of nonideal bidirectional teleportation. We evaluate these bounds for some key examples—isotropic states and when there is no resource state at all. In both cases, we find an analytical solution. The second example establishes a benchmark for classical versus quantum bidirectional teleportation. Another example that we investigate consists of two Bell states that have been sent through a generalized amplitude damping channel. For this scenario, we find an analytical expression for the error, as well as a numerical solution that agrees with the former up to numerical precision.

1.
L.
Vaidman
,
Phys. Rev. A
49
(
2
),
1473
(
1994
).
2.
S. F.
Huelga
,
J. A.
Vaccaro
,
A.
Chefles
, and
M. B.
Plenio
,
Phys. Rev. A
63
(
4
),
042303
(
2001
).
3.
S. F.
Huelga
,
M. B.
Plenio
, and
J. A.
Vaccaro
,
Phys. Rev. A
65
(
4
),
042316
(
2002
).
4.
H.-Z.
Fu
,
X.-L.
Tian
, and
Y.
Hu
,
Int. J. Theor. Phys.
53
(
6
),
1840
(
2014
).
5.
S.
Hassanpour
and
M.
Houshmand
,
Quantum Inf. Process.
15
(
2
),
905
(
2016
).
6.
X.-W.
Zha
,
Z.-C.
Zou
,
J.-X.
Qi
, and
H.-Y.
Song
,
Int. J. Theor. Phys.
52
(
6
),
1740
(
2013
).
7.
C.
Shukla
,
A.
Banerjee
, and
A.
Pathak
,
Int. J. Theor. Phys.
52
(
10
),
3790
(
2013
).
8.
Y.-h.
Li
and
L.-p.
Nie
,
Int. J. Theor. Phys.
52
(
5
),
1630
(
2013
).
9.
Y.-h.
Li
,
X.-l.
Li
,
M.-h.
Sang
,
Y.-y.
Nie
, and
Z.-s.
Wang
,
Quantum Inf. Process.
12
(
12
),
3835
(
2013
).
10.
Y.
Chen
,
Int. J. Theor. Phys.
53
(
5
),
1454
(
2014
).
11.
A.
Yan
,
Int. J. Theor. Phys.
52
(
11
),
3870
(
2013
).
12.
X.-m.
Sun
and
X.-w.
Zha
,
Acta Photonica Sin.
42
(
9
),
1052
(
2013
).
13.
Y.-J.
Duan
and
X.-W.
Zha
,
Int. J. Theor. Phys.
53
(
11
),
3780
(
2014
).
14.
Y.-h.
Li
,
L.-p.
Nie
,
X.-l.
Li
, and
M.-h.
Sang
,
Int. J. Theor. Phys.
55
(
6
),
3008
(
2016
).
15.
R.
Zhou
,
R.
Xu
, and
H.
Lan
,
IEEE Access
7
,
44269
(
2019
).
16.
Y.-J.
Duan
,
X.-W.
Zha
,
X.-M.
Sun
, and
J.-F.
Xia
,
Int. J. Theor. Phys.
53
(
8
),
2697
(
2014
).
17.
W.-q.
Hong
,
Int. J. Theor. Phys.
55
(
1
),
384
(
2016
).
18.
M.-h.
Sang
,
Int. J. Theor. Phys.
55
(
1
),
380
(
2016
).
19.
D.
Zhang
,
X. W.
Zha
,
W.
Li
, and
Y.
Yu
,
Quantum Inf. Process.
14
(
10
),
3835
(
2015
).
20.
M. S.
Sadeghi Zadeh
,
M.
Houshmand
, and
H.
Aghababa
,
Int. J. Theor. Phys.
56
(
7
),
2101
(
2017
).
21.
Y.-h.
Li
and
X.-m.
Jin
,
Quantum Inf. Process.
15
(
2
),
929
(
2016
).
22.
K.
Thapliyal
,
A.
Verma
, and
A.
Pathak
,
Quantum Inf. Process.
14
(
12
),
4601
(
2015
).
23.
Y.-T.
Gou
,
H.-L.
Shi
,
X.-H.
Wang
, and
S.-Y.
Liu
,
Quantum Inf. Process.
16
(
11
),
278
(
2017
).
24.
C.
Couteau
,
Contemp. Phys.
59
(
3
),
291
(
2018
).
25.
A. U.
Siddiqui
and
M. M.
Wilde
, “
Quantifying the performance of bidirectional quantum teleportation
,” arXiv:2010.07905v3 (
2020
).
26.
C. H.
Bennett
,
D. P.
DiVincenzo
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. A
54
,
3824
(
1996
).
27.
E.
Chitambar
and
G.
Gour
,
Rev. Mod. Phys.
91
,
025001
(
2019
).
28.
A.
Kitaev
,
Russ. Math. Surv.
52
(
6
),
1191
(
1997
).
29.
J.
Watrous
,
The Theory of Quantum Information
(
Cambridge University Press
,
2018
).
30.
M. M.
Wilde
,
Quantum Information Theory
, 2nd ed. (
Cambridge University Press
,
2017
).
31.
S.
Khatri
and
M. M.
Wilde
, “
Principles of quantum communication theory: A modern approach
,” arXiv:2011.04672v1 (
2020
).
32.
E. M.
Rains
,
Phys. Rev. A
60
(
1
),
179
(
1999
).
33.
E. M.
Rains
,
IEEE Trans. Inf. Theory
47
(
7
),
2921
(
2001
).
34.
S.
Khatri
,
K.
Sharma
, and
M. M.
Wilde
,
Phys. Rev. A
102
(
1
),
012401
(
2020
).
35.
A.
Soeda
,
P. S.
Turner
, and
M.
Murao
,
Phys. Rev. Lett.
107
,
180501
(
2011
).
36.
E.
Wakakuwa
,
A.
Soeda
, and
M.
Murao
,
Phys. Rev. Lett.
122
,
190502
(
2019
).
You do not currently have access to this content.