Optical splitters are one of the most important interconnects in the optical chips of future optical quantum computers. Here, we introduce novel quantum photonic splitters based on polymeric submicropillars that split the single-photon signal generated by a colloidal quantum dot (QD) into multiple outputs, which can be easily accessed through a conventional confocal scanning optical system. Using a single continuous-wave laser with a low absorption wavelength for both polymer material and QDs, we were able to first deterministically place a single-photon emitter (SPE) within one of the submicropillars and then characterize the single-photon guiding effect of the fabricated structures. The submicropillars, with their size and position which are comprehensively optimized by numerical simulations, act as single-mode directional coupler guiding both the laser excitation and the single-photon emission thanks to the evanescent wave coupling effect. With one-step fabrication, we can create a well-distributed array of “imaginary” SPEs from an original SPE. Our method opens various applications in integrated devices based on solid-state quantum emitters.

1.
J. M.
Arrazola
,
V.
Bergholm
,
K.
Brádler
,
T. R.
Bromley
,
M. J.
Collins
,
I.
Dhand
,
A.
Fumagalli
,
T.
Gerrits
,
A.
Goussev
 et al.,
Nature
591
,
54
(
2021
).
2.
S.
Lloyd
and
S. L.
Braunstein
, “
Quantum computation over continuous variables
,” in
Quantum Information With Continuous Variables
(
Springer
,
1999
), pp.
9
17
.
3.
N. C.
Menicucci
,
P.
Van Loock
,
M.
Gu
,
C.
Weedbrook
,
T. C.
Ralph
, and
M. A.
Nielsen
,
Phys. Rev. Lett.
97
,
110501
(
2006
).
4.
C. S.
Hamilton
,
R.
Kruse
,
L.
Sansoni
,
S.
Barkhofen
,
C.
Silberhorn
, and
I.
Jex
,
Phys. Rev. Lett.
119
,
170501
(
2017
).
5.
T. R.
Bromley
,
J. M.
Arrazola
,
S.
Jahangiri
,
J.
Izaac
,
N.
Quesada
,
A. D.
Gran
,
M.
Schuld
,
J.
Swinarton
,
Z.
Zabaneh
 et al.,
Quantum Sci. Technol.
5
,
034010
(
2020
).
6.
L.
Banchi
,
M.
Fingerhuth
,
T.
Babej
,
C.
Ing
, and
J. M.
Arrazola
,
Sci. Adv.
6
,
eaax1950
(
2020
).
7.
H.-S.
Zhong
,
L.-C.
Peng
,
Y.
Li
,
Y.
Hu
,
W.
Li
,
J.
Qin
,
D.
Wu
,
W.
Zhang
,
H.
Li
 et al.,
Sci. Bull.
64
,
511
(
2019
).
8.
S.
Paesani
,
Y.
Ding
,
R.
Santagati
,
L.
Chakhmakhchyan
,
C.
Vigliar
,
K.
Rottwitt
,
L. K.
Oxenløwe
,
J.
Wang
,
M. G.
Thompson
 et al.,
Nat. Phys.
15
,
925
929
(
2019
).
9.
H.-S.
Zhong
,
H.
Wang
,
Y.-H.
Deng
,
M.-C.
Chen
,
L.-C.
Peng
,
Y.-H.
Luo
,
J.
Qin
,
D.
Wu
,
X.
Ding
 et al.,
Science
370
,
1460
1463
(
2020
).
10.
J. E.
Bourassa
,
R. N.
Alexander
,
M.
Vasmer
,
A.
Patil
,
I.
Tzitrin
,
T.
Matsuura
,
D.
Su
,
B. Q.
Baragiola
,
S.
Guha
 et al.,
Quantum
5
,
392
(
2021
).
11.
M. V.
Larsen
,
C.
Chamberland
,
K.
Noh
,
J. S.
Neergaard-Nielsen
, and
U. L.
Andersen
,
PRX Quantum
2
,
030325
(
2021
).
12.
F.
Qi
,
Z.
Wang
,
W.
Xu
,
X.-W.
Chen
, and
Z.-Y.
Li
,
Photonics Res.
8
,
622
(
2020
).
13.
S. K.
Lee
,
N. S.
Han
,
T. H.
Yoon
, and
M.
Cho
,
Commun. Phys.
1
,
51
(
2018
).
14.
G.
Muñoz-Matutano
,
D.
Barrera
,
C.
Fernandez-Pousa
,
R.
Chulia-Jordan
,
L.
Seravalli
,
G.
Trevisi
,
P.
Frigeri
,
S.
Sales
, and
J.
Martínez-Pastor
,
Sci. Rep.
6
,
27214
(
2016
).
15.
G.
Bertocchi
,
O.
Alibart
,
D. B.
Ostrowsky
,
S.
Tanzilli
, and
P.
Baldi
,
J. Phys. B
39
,
1011
(
2006
).
16.
M.
Dong
,
G.
Clark
,
A. J.
Leenheer
,
M.
Zimmermann
,
D.
Dominguez
,
A. J.
Menssen
,
D.
Heim
,
G.
Gilbert
,
D.
Englund
 et al.,
Nat. Photonics
16
,
59
(
2022
).
17.
J.
Cariñe
,
G.
Cañas
,
P.
Skrzypczyk
,
I.
Šupić
,
N.
Guerrero
,
T.
Garcia
,
L.
Pereira
,
M.
Prosser
,
G. B.
Xavier
 et al.,
Optica
7
,
542
(
2020
).
18.
Q.
Shi
,
B.
Sontheimer
,
N.
Nikolay
,
A.
Schell
,
J.
Fischer
,
A.
Naber
,
O.
Benson
, and
M.
Wegener
,
Sci. Rep.
6
,
31135
(
2016
).
19.
N.
Prtljaga
,
R.
Coles
,
J.
O'Hara
,
B.
Royall
,
E.
Clarke
,
A.
Fox
, and
M.
Skolnick
,
Appl. Phys. Lett.
104
,
231107
(
2014
).
20.
N.
Prtljaga
,
C.
Bentham
,
J.
O'Hara
,
B.
Royall
,
E.
Clarke
,
L. R.
Wilson
,
M. S.
Skolnick
, and
A. M.
Fox
,
Appl. Phys. Lett.
108
,
251101
(
2016
).
21.
P.
Jiang
,
N.
Ma
,
P.
Liu
,
W.
Wu
, and
K.
Zhang
,
Appl. Sci.
11
,
695
(
2021
).
22.
A. W.
Schell
,
J.
Kaschke
,
J.
Fischer
,
R.
Henze
,
J.
Wolters
,
M.
Wegener
, and
O.
Benson
,
Sci. Rep.
3
,
1577
(
2013
).
23.
P.
Schnauber
,
J.
Schall
,
S.
Bounouar
,
T.
Hohne
,
S.-I.
Park
,
G.-H.
Ryu
,
T.
Heindel
,
S.
Burger
,
J.-D.
Song
 et al.,
Nano Lett.
18
,
2336
(
2018
).
24.
T. H.
Au
,
A.
Perry
,
J.
Audibert
,
D. T.
Trinh
,
D. B.
Do
,
S.
Buil
,
X.
Quélin
,
J.-P.
Hermier
, and
N. D.
Lai
,
Sci. Rep.
10
,
4843
(
2020
).
25.
F.
Mao
,
Q. C.
Tong
,
D. T. T.
Nguyen
,
A. T.
Huong
,
R.
Odessey
,
F.
Saudrais
, and
N. D.
Lai
, “
LOPA-based direct laser writing of multi-dimensional and multi-functional photonic submicrostructures
,” in
Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X
(
SPIE
,
2017
), Vol. 10115, pp.
32
39
.
26.
T. H.
Au
,
S.
Buil
,
X.
Quélin
,
J.-P.
Hermier
, and
N. D.
Lai
,
Appl. Phys. Lett.
113
,
111105
(
2018
).
27.
T. H.
Au
,
S.
Buil
,
X.
Quélin
,
J.-P.
Hermier
, and
N. D.
Lai
,
Nanoscale Adv.
1
,
3225
(
2019
).
28.
T. H.
Au
,
S.
Buil
,
X.
Quélin
,
J.-P.
Hermier
, and
N. D.
Lai
,
ACS Photonics
6
,
3024
(
2019
).
29.
T. B.
Hoang
,
G. M.
Akselrod
, and
M. H.
Mikkelsen
,
Nano Lett.
16
,
270
(
2016
).
30.
S.
Kreinberg
,
T.
Grbešić
,
M.
Strauß
,
A.
Carmele
,
M.
Emmerling
,
C.
Schneider
,
S.
Höfling
,
X.
Porte
, and
S.
Reitzenstein
,
Light: Sci. Appl.
7
,
41
(
2018
).
31.
J.
Zhang
,
S.
Chattaraj
,
Q.
Huang
,
L.
Jordao
,
S.
Lu
, and
A.
Madhukar
, “
Mesa-top single quantum dot arrays as single photon sources: A new paradigm for on-chip quantum photonics
,” in
Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC)
(
IEEE
,
2020
).
32.
Y.-C.
Chen
,
P. S.
Salter
,
S.
Knauer
,
L.
Weng
,
A. C.
Frangeskou
,
C. J.
Stephen
,
S. N.
Ishmael
,
P. R.
Dolan
,
S.
Johnson
 et al.,
Nat. Photonics
11
,
77
(
2017
).
33.
Q.
Zhang
,
C.
Dang
,
H.
Urabe
,
J.
Wang
,
S.
Sun
, and
A.
Nurmikko
,
Opt. Express
16
,
19592
(
2008
).
34.
C.
Palacios-Berraquero
,
D. M.
Kara
,
A. R.-P.
Montblanch
,
M.
Barbone
,
P.
Latawiec
,
D.
Yoon
,
A. K.
Ott
,
M.
Loncar
,
A. C.
Ferrari
 et al.,
Nat. Commun.
8
,
15093
(
2017
).
35.
W.
Wu
,
C. K.
Dass
,
J. R.
Hendrickson
,
R. D.
Montaño
,
R. E.
Fischer
,
X.
Zhang
,
T. H.
Choudhury
,
J. M.
Redwing
,
Y.
Wang
 et al.,
Appl. Phys. Lett.
114
,
213102
(
2019
).
36.
C.
Li
,
N.
Mendelson
,
R.
Ritika
,
Y.
Chen
,
Z.-Q.
Xu
,
M.
Toth
, and
I.
Aharonovich
,
Nano Lett.
21
,
3626
3632
(
2021
).
37.
K.
Parto
,
S. I.
Azzam
,
K.
Banerjee
, and
G.
Moody
,
Nat. Commun.
12
,
3585
(
2021
).
38.
C.
Fournier
,
A.
Plaud
,
S.
Roux
,
A.
Pierret
,
M.
Rosticher
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Buil
,
X.
Quélin
 et al.,
Nat. Commun.
12
,
3779
(
2021
).
39.
B.
Mahler
,
P.
Spinicelli
,
S.
Buil
,
X.
Quelin
,
J.-P.
Hermier
, and
B.
Dubertret
,
Nat. Mater.
7
,
659
664
(
2008
).

Supplementary Material

You do not currently have access to this content.