We show the existence of a majorization ladder in bosonic Gaussian channels, that is, we prove that the channel output resulting from the nth energy eigenstate (Fock state) majorizes the channel output resulting from the (n+1)th energy eigenstate (Fock state). This reflects a remarkable link between the energy at the input of the channel and a disorder relation at its output as captured by majorization theory. This result was previously known in the special cases of a pure-loss channel and quantum-limited amplifier, and we achieve here its non-trivial generalization to any single-mode phase-covariant (or -contravariant) bosonic Gaussian channel. The key to our proof is the explicit construction of a column-stochastic matrix that relates the outputs of the channel for any two subsequent Fock states at its input. This is made possible by exploiting a recently found recurrence relation on multiphoton transition probabilities for Gaussian unitaries [Jabbour and Cerf, Phys. Rev. Res. 3, 043065 (2021)]. Possible generalizations and implications of these results are then discussed.

1.
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
).
2.
B.
Schumacher
and
M. D.
Westmoreland
,
Phys. Rev. A
56
,
131
(
1997
).
3.
A.
Holevo
,
IEEE Trans. Inf. Theory
44
,
269
(
1998
).
4.
A. S.
Holevo
,
M.
Sohma
, and
O.
Hirota
,
Phys. Rev. A
59
,
1820
(
1999
).
5.
A. S.
Holevo
and
R. F.
Werner
,
Phys. Rev. A
63
,
032312
(
2001
).
6.
V.
Giovannetti
,
S.
Guha
,
S.
Lloyd
,
L.
Maccone
, and
J. H.
Shapiro
,
Phys. Rev. A
70
,
032315
(
2004
).
7.
V.
Giovannetti
,
R.
García-Patrón
,
N. J.
Cerf
, and
A. S.
Holevo
,
Nat. Photonics
8
,
796
(
2014
).
8.
A.
Mari
,
V.
Giovannetti
, and
A. S.
Holevo
,
Nat. Commun.
5
,
3826
(
2014
).
9.
S.
Guha
, “
Multiple-user quantum information theory for optical communication channels
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2008
).
10.
R.
García-Patrón
,
C.
Navarrete-Benlloch
,
S.
Lloyd
,
J. H.
Shapiro
, and
N. J.
Cerf
,
Phys. Rev. Lett.
108
,
110505
(
2012
).
11.
C.
Gagatsos
,
O.
Oreshkov
, and
N.
Cerf
,
Phys. Rev. A
87
,
042307
(
2013
).
12.
M. G.
Jabbour
and
N. J.
Cerf
,
Phys. Rev. Res.
3
,
043065
(
2021
).
13.
V.
Kaftal
and
G.
Weiss
,
J. Funct. Anal.
259
,
3115
(
2010
).
14.
M. G.
Jabbour
,
R.
García-Patrón
, and
N. J.
Cerf
,
New J. Phys.
18
,
073047
(
2016
).
15.
G. D.
Palma
,
D.
Trevisan
, and
V.
Giovannetti
,
IEEE Trans. Inf. Theory
62
,
2895
2906
(
2016
).
You do not currently have access to this content.