We consider a global quantum system (the “Universe”) satisfying a double constraint, both on total energy and total momentum. Generalizing the Page and Wootters quantum clock formalism, we provide a model of 3 + 1 dimensional, non-relativistic, quantum spacetime emerging from entanglement among different subsystems in a globally “timeless” and “positionless” Universe.

1.
D. N.
Page
and
W. K.
Wootters
,
Phys. Rev. D
27
,
2885
(
1983
).
2.
W. K.
Wootters
,
Int. J. Theor. Phys.
23
,
701
(
1984
).
3.
D. N.
Page
, “
Clock time and entropy
,” in
Physical Origins of Time Asymmetry
, edited by
J. J.
Halliwell
,
J.
Perez-Mercader
, and
W. H.
Zurek
(
Cambridge University
,
Cambridge
,
1993
).
4.
B. S.
DeWitt
,
Phys. Rev.
160
,
1113
(
1967
).
5.
C. J.
Isham
, “
Canonical quantum gravity and the problem of time
,” in
Integrable Systems, Quantum Groups, and Quantum Field Theories
, edited by
L. A.
Ibort
and
M. A.
Rodríguez
(
Springer
,
New York
,
1993
), p.
157
.
6.
H.
Everett
, “
The theory of the universal wave function
,” in
The Many Worlds Interpretation of Quantum Mechanics
(
Princeton University, Department of Physics
,
1957
), pp.
1
140
.
7.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Phys. Rev. D
92
,
045033
(
2015
).
8.
E.
Moreva
,
M.
Gramegna
,
G.
Brida
,
L.
Maccone
, and
M.
Genovese
,
Phys. Rev. D
96
,
102005
(
2017
).
9.
C.
Marletto
and
V.
Vedral
,
Phys. Rev. D
95
,
043510
(
2017
).
10.
V.
Vedral
, “
Time (inverse) temperature and cosmological inflation as entanglement
,” in
Time in Physics
, edited by
R.
Renner
and
S.
Stupar
(
Springer
,
New York
,
2017
), pp.
27
42
.
11.
L.
Maccone
and
K.
Sacha
,
Phys. Rev. Lett.
124
,
110402
(
2020
).
12.
A. R. H.
Smith
and
M.
Ahmadi
,
Quantum
3
,
160
(
2019
).
13.
A.
Boette
and
R.
Rossignoli
,
Phys. Rev. A
98
,
032108
(
2018
).
14.
A.
Boette
,
R.
Rossignoli
,
N.
Gigena
, and
M.
Cerezo
,
Phys. Rev. A
93
,
062127
(
2016
).
15.
J.
Leon
and
L.
Maccone
,
Found. Phys.
47
,
1597
(
2017
).
16.
P. A.
Hoehn
,
A. R. H.
Smith
, and
M. P. E.
Lock
,
Phys. Rev. D
104
,
066001
(
2021
).
17.
P. A.
Hoehn
,
A. R. H.
Smith
, and
M. P. E.
Lock
,
Front. Phys.
9
,
587083
(
2021
).
18.
T.
Favalli
and
A.
Smerzi
,
Quantum
4
,
354
(
2020
).
19.
T.
Favalli
and
A.
Smerzi
,
Phys. Rev. D
105
,
023525
(
2022
).
20.
A. R. H.
Smith
and
M.
Ahmadi
,
Nat. Commun.
11
,
5360
(
2020
).
21.
N. L.
Diaz
,
J. M.
Matera
, and
R.
Rossignoli
,
Phys. Rev. D
100
,
125020
(
2019
).
22.
N. L.
Diaz
and
R.
Rossignoli
,
Phys. Rev. D
99
,
045008
(
2019
).
23.
C.
Foti
,
A.
Coppo
,
G.
Barni
,
A.
Cuccoli
, and
P.
Verrucchi
,
Nat. Commun.
12
,
1787
(
2021
).
24.
E.
Castro-Ruiz
,
F.
Giacomini
,
A.
Belenchia
, and
Č.
Brukner
,
Nat. Commun.
11
,
2672
(
2020
).
25.
V.
Baumann
,
F.
Del Santo
,
A. R. H.
Smith
,
F.
Giacomini
,
E.
Castro-Ruiz
, and
C.
Brukner
,
Quantum
5
,
524
(
2021
).
26.
V.
Baumann
,
M.
Krumm
,
P. A.
Guérin
, and
Č.
Brukner
,
Phys. Rev. Res.
4
,
013180
(
2022
).
27.
A. C.
de la Hamette
,
S. L.
Ludescher
, and
M. P.
Mueller
, arXiv:2112.00046 (
2021
).
28.
L. R. S.
Mendes
and
D. O.
Soares-Pinto
,
Proc. R. Soc. A
475
,
20190470
(
2019
).
29.
L. R. S.
Mendes
,
F.
Brito
, and
D. O.
Soares-Pinto
, arXiv:2107.11452 (
2021
).
30.
E.
Moreva
,
G.
Brida
,
M.
Gramegna
,
V.
Giovannetti
,
L.
Maccone
, and
M.
Genovese
,
Phys. Rev. A
89
,
052122
(
2014
).
31.
A. V.
Rau
,
J. A.
Dunningham
, and
K.
Burnett
,
Science
301
,
1081
(
2003
).
32.
Y.
Aharonov
and
L.
Susskind
,
Phys. Rev.
155
,
1428
(
1967
).
33.
Y.
Aharonov
and
L.
Susskind
,
Phys. Rev.
158
,
1237
(
1967
).
34.
Y.
Aharonov
and
T.
Kaufherr
,
Phys. Rev. D
30
,
368
(
1984
).
35.
S. D.
Bartlett
,
T.
Rudolph
, and
R. W.
Spekkens
,
Rev. Mod. Phys.
79
,
555
(
2007
).
36.
S. D.
Bartlett
,
T.
Rudolph
,
R. W.
Spekkens
, and
P. S.
Turner
,
New J. Phys.
11
,
063013
(
2009
).
37.
G.
Gour
and
R. W.
Spekkens
,
New J. Phys.
10
,
033023
(
2008
).
38.
A.
Kitaev
,
D.
Mayers
, and
J.
Preskill
,
Phys. Rev. A
69
,
052326
(
2004
).
39.
M. C.
Palmer
,
F.
Girelli
, and
S. D.
Bartlett
,
Phys. Rev. A
89
,
052121
(
2014
).
40.
S. D.
Bartlett
,
T.
Rudolph
,
R. W.
Spekkens
, and
P. S.
Turner
,
New J. Phys.
8
,
58
(
2006
).
41.
A. R. H.
Smith
,
M.
Piani
, and
R. B.
Mann
,
Phys. Rev. A
94
,
012333
(
2016
).
42.
D.
Poulin
and
J.
Yard
,
New J. Phys.
9
,
156
(
2007
).
43.
F.
Girelli
and
D.
Poulin
,
Phys. Rev. D
77
,
104012
(
2008
).
44.
M.
Skotiniotis
,
B.
Toloui
,
I. T.
Durham
, and
B. C.
Sanders
,
Phys. Rev. Lett.
111
,
020504
(
2013
).
45.
D.
Poulin
,
Int. J. Theor. Phys.
45
,
1189
1215
(
2006
).
46.
T.
Miyadera
,
L.
Loveridge
, and
P.
Busch
,
J. Phys. A
49
,
185301
(
2016
).
47.
L.
Loveridge
,
P.
Busch
, and
T.
Miyadera
,
Europhys. Lett.
117
,
40004
(
2017
).
48.
L.
Loveridge
,
T.
Miyadera
, and
P.
Busch
,
Found. Phys.
48
,
135
198
(
2018
).
49.
J.
Pienaar
, arXiv:1601.07320 (
2016
).
50.
R. M.
Angelo
,
N.
Brunner
,
S.
Popescu
,
A. J.
Short
, and
P.
Skrzypczyk
,
J. Phys. A
44
,
145304
(
2011
).
51.
R. M.
Angelo
and
A. D.
Ribeiro
,
J. Phys. A
45
,
465306
(
2012
).
52.
S. T.
Pereira
and
R. M.
Angelo
,
Phys. Rev. A
91
,
022107
(
2015
).
53.
L.
Maccone
,
Found. Phys.
49
,
1394
1403
(
2019
).
54.
C.
Rovelli
,
Classical Quantum Gravity
8
,
317
(
1991
).
55.
C.
Rovelli
,
Int. J. Theor. Phys.
35
,
1637
1678
(
1996
).
56.
F.
Giacomini
,
E.
Castro-Ruiz
, and
Č.
Brukner
,
Nat. Commun.
10
,
494
(
2019
).
57.
A.
Vanrietvelde
,
P. A.
Hoehn
,
F.
Giacomini
, and
E.
Castro-Ruiz
,
Quantum
4
,
225
(
2020
).
58.
A.
Vanrietvelde
,
P. A.
Hoehn
, and
F.
Giacomini
, arXiv:1809.05093 (
2018
).
59.
J. M.
Yang
,
Quantum
4
,
283
(
2020
).
60.
F.
Giacomini
,
E.
Castro-Ruiz
, and
Č.
Brukner
,
Phys. Rev. Lett.
123
,
090404
(
2019
).
61.
L. F.
Streiter
,
F.
Giacomini
, and
Č.
Brukner
,
Phys. Rev. Lett.
126
,
230403
(
2021
).
62.
A. C.
de la Hamette
and
T. D.
Galley
,
Quantum
4
,
367
(
2020
).
63.
M.
Krumm
,
P. A.
Hoehn
, and
M. P.
Mueller
, arXiv:2011.01951 (
2021
).
64.
A.
Ballesteros
,
F.
Giacomini
, and
G.
Gubitosi
,
Quantum
5
,
470
(
2021
).
65.
F.
Giacomini
,
Quantum
5
,
508
(
2021
).
66.
A. C.
de la Hamette
,
T. D.
Galley
,
P. A.
Hoehn
,
L.
Loveridge
, and
M. P.
Mueller
, arXiv:2110.13824 (
2021
).
67.
S. A.
Ahmad
,
T. D.
Galley
,
P. A.
Hoehn
,
M. P. E.
Lock
, and
A. R. H.
Smith
,
Phys. Rev. Lett.
128
,
170401
(
2022
).
68.
P. A.
Hoehn
,
M.
Krumm
, and
M. P.
Mueller
, arXiv:2107.07545 (
2021
).
69.
D. T.
Pegg
,
Phys. Rev. A
58
,
4307
(
1998
).
70.
D. T.
Pegg
and
S. M.
Barnett
,
Phys. Rev. A
39
,
1665
(
1989
).
71.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Phys. Rev. A
67
,
052109
(
2003
).
72.
N.
Margolus
and
L. B.
Levitin
,
Physica D
120
,
188
(
1998
).
73.
K. V.
Kuchar
,
Int. J. Mod. Phys. D
20
,
3
(
2011
).
74.
R.
Gambini
,
R. A.
Porto
,
J.
Pullin
, and
S.
Torterolo
,
Phys. Rev. D
79
,
041501(R)
(
2009
).
75.
J.
von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University
,
Princeton
,
1955
).
76.
B.
Thaller
,
The Dirac Equation
(
Springer-Verlag
,
Berlin
,
1992
).
You do not currently have access to this content.