Cryogenics is a pivotal aspect in the development of quantum technologies. Closed-cycle devices have recently emerged as an environmentally friendly and low-maintenance alternative to liquid helium cryostats. Yet the larger level of vibrations in dry cryocoolers forbids their use in most sensitive applications. In a recent work, we have proposed an inertial, broadband, contactless sensor based on the piezospectroscopic effect, i.e., the natural sensitivity of optical lines to strain exhibited by impurities in solids. This sensor builds on the exceptional spectroscopic properties of rare earth ions and operates below 4 K, where spectral hole burning considerably enhances the sensitivity. In this paper, we investigate the fundamental and technical limitations of this vibration sensor by comparing a rigid sample attachment to the cold stage of a pulse-tube cryocooler and a custom-designed exchange gas chamber for acoustic isolation.

1.
D.
Kramer
,
Phys. Today
, June (2020).
2.
S.
Vadia
 et al., 
PRX Quantum
2
,
040318
(
2021
).
3.
P.
Micke
 et al.,
Rev. Sci. Instrum.
90
,
065104
(
2019
).
4.
M.
Gündoğan
,
P. M.
Ledingham
,
K.
Kutluer
,
M.
Mazzera
, and
H.
De Riedmatten
,
Phys. Rev. Lett.
114
,
230501
(
2015
).
5.
M. J.
Thorpe
,
D. R.
Leibrandt
, and
T.
Rosenband
,
New J. Phys.
15
,
033006
(
2013
).
6.
O.
Gobron
,
K.
Jung
,
N.
Galland
,
K.
Predehl
,
R.
Le Targat
,
A.
Ferrier
,
P.
Goldner
,
S.
Seidelin
, and
Y.
Le Coq
,
Opt. Express
25
,
15539
(
2017
).
7.
F. P.
Quacquarelli
,
J.
Puebla
,
T.
Scheler
,
D.
Andres
,
C.
Bödefeld
,
B.
Sipos
,
C.
Dal Savio
,
A.
Bauer
,
C.
Pfleiderer
 et al.,
Microsc. Today
23
,
12
(
2015
).
8.
R.
Maisonobe
,
J.
Billard
,
M. D.
Jesus
,
A.
Juillard
,
D.
Misiak
,
E.
Olivieri
,
S.
Sayah
, and
L.
Vagneron
,
J. Instrum.
13
,
T08009
(
2018
).
9.
T.
Tomaru
,
T.
Suzuki
,
T.
Haruyama
,
T.
Shintomi
,
A.
Yamamoto
,
T.
Koyama
, and
R.
Li
,
Cryogenics
44
,
309
(
2004
).
10.
A.
Louchet-Chauvet
,
R.
Ahlefeldt
, and
T.
Chanelière
,
Rev. Sci. Instrum.
90
,
034901
(
2019
).
11.
C.
Bungenstock
,
T.
Tröster
, and
W.
Holzapfel
,
Phys. Rev. B
62
,
7945
(
2000
).
12.
A.
Kaminska
,
A.
Kozanecki
,
M.
Ramirez
,
L.
Bausa
,
G.
Boulon
,
M.
Bettinelli
,
M.
Boćkowski
, and
A.
Suchocki
,
J. Lumin.
169
,
507
(
2016
).
13.
A.
Kaplyanskii
,
Opt. Spectrosc.
16
,
329
(
1964
).
14.
Y.-H.
Chen
,
X.
Fernandez-Gonzalvo
, and
J. J.
Longdell
,
Phys. Rev. B
94
,
075117
(
2016
).
15.
Y.
Sun
,
G.
Wang
,
R.
Cone
,
R.
Equall
, and
M.
Leask
,
Phys. Rev. B
62
,
15443
(
2000
).
16.
S.
Zhang
,
N.
Galland
,
N.
Lučić
,
R.
Le Targat
,
A.
Ferrier
,
P.
Goldner
,
B.
Fang
,
Y.
Le Coq
, and
S.
Seidelin
,
Phys. Rev. Res.
2
,
013306
(
2020
).
17.
V.
Crozatier
,
F.
De Sèze
,
L.
Haals
,
F.
Bretenaker
,
I.
Lorgeré
, and
J.-L.
Le Gouët
,
Opt. Commun.
241
,
203
(
2004
).
18.
M.
Kreitman
,
T.
Ashworth
, and
M.
Rechowicz
,
Cryogenics
12
,
32
(
1972
).
19.
T.
Ushiba
 et al.,
Classical Quantum Gravity
38
,
085013
(
2021
).
20.
F.
De Seze
,
A.
Louchet
,
V.
Crozatier
,
I.
Lorgeré
,
F.
Bretenaker
,
J.-L.
Le Gouët
,
O.
Guillot-Noël
, and
P.
Goldner
,
Phys. Rev. B
73
,
085112
(
2006
).
21.
R.
Lauro
,
T.
Chanelière
, and
J.-L.
Le Gouët
,
Phys. Rev. A
79
,
063844
(
2009
).
22.
R.
Macfarlane
,
Opt. Lett.
18
,
829
831
(
1993
).
23.
C.
Thiel
,
Y.
Sun
,
T.
Böttger
,
W.
Babbitt
, and
R.
Cone
,
J. Lumin.
130
,
1598
(
2010
).
24.
C. W.
Thiel
,
N.
Sinclair
,
W.
Tittel
, and
R. L.
Cone
,
Phys. Rev. Lett.
113
,
160501
(
2014
).
25.
R. M.
Macfarlane
,
Opt. Lett.
18
,
1958
(
1993
).
You do not currently have access to this content.