In the last decade, experimentalists have demonstrated their impressive ability to control mechanical modes within mesoscopic objects down to the quantum level: it is now possible to create mechanical Fock states, to entangle mechanical modes from distinct objects, and to store quantum information or transfer it from one quantum bit to another, among the many possibilities found in today's literature. Indeed, mechanics is quantum, very much like spins or electromagnetic degrees of freedom; and all of this is, in particular, referred to as a new engineering resource for quantum technologies. However, there is also much more beyond this utilitarian aspect: invoking the original discussions of Braginsky and Caves, where a quantum oscillator is thought of as a quantum detector for a classical field, namely, a gravitational wave, which is also a unique sensing capability for quantum fields. The subject of study is then the baths to which the mechanical mode is coupled to, let them be known or unknown in nature. This Perspective is about this new potentiality that addresses stochastic thermodynamics, potentially down to its quantum version, the search for a fundamental underlying (random) field postulated in recent theories that can be affiliated to the class of the wave-function collapse models, and more generally open questions of condensed matter like the actual nature of the elusive (and ubiquitous) two-level systems present within all mechanical objects. However, such research turns out to be much more demanding than the use of a few quantum mechanical modes: all the known baths have to be identified, experiments have to be conducted in-equilibrium, and the word “mechanics” needs to be justified by a real ability to move substantially the center-of-mass when a proper drive tone is applied to the system.

1.
A. J.
Leggett
,
J. Phys.
14
,
R415
(
2002
).
2.
U.
Seifert
,
Phys. Rev. Lett.
95
,
040602
(
2005
).
3.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
4.
T.
Sagawa
and
M.
Ueda
,
Phys. Rev. Lett.
104
,
090602
(
2010
).
5.
A.
Bérut
,
A.
Arakelyan
,
A.
Petrosyan
,
S.
Ciliberto
,
R.
Dillenschneider
, and
E.
Lutz
,
Nature
483
,
187
(
2012
).
6.
M.
Ribezzi-Crivellari
and
F.
Ritort
,
Nat. Phys.
15
,
660
(
2019
).
7.
S.
Dago
,
J.
Pereda
,
N.
Barros
,
S.
Ciliberto
, and
L.
Bellon
,
Phys. Rev. Lett.
126
,
170601
(
2021
).
8.
S.
Ciliberto
,
A.
Imparato
,
A.
Naert
, and
M.
Tanase
,
Phys. Rev. Lett.
110
,
180601
(
2013
).
9.
J. P.
Pekola
,
Nat. Phys.
11
,
118
(
2015
).
10.
O.-P.
Saira
,
Y.
Yoon
,
T.
Tanttu
,
M.
Möttönen
,
D. V.
Averin
, and
J. P.
Pekola
,
Phys. Rev. Lett.
109
,
180601
(
2012
).
11.
J. V.
Koski
,
V. F.
Maisi
,
J. P.
Pekola
, and
D. V.
Averin
,
Proc. Natl. Acad. Sci.
111
,
13786
(
2014
).
12.
O.
Maillet
 et al 
Phys. Rev. Lett.
122
,
150604
(
2019
).
13.
C.
Elouard
,
D. A.
Herrera-Marti
,
M.
Clusel
, and
A.
Auffeves
,
npj Quantum Inf.
3
,
9
(
2017
).
14.
J. P.
Pekola
and
B.
Karimi
,
Rev. Mod. Phys.
93
,
041001
(
2021
).
15.
D. V.
Averin
and
J. P.
Pekola
,
Phys. Rev. Lett.
104
,
220601
(
2010
).
16.
A. A.
Clerk
,
M. H.
Devoret
,
S. M.
Girvin
,
F.
Marquardt
, and
R. J.
Schoelkopf
,
Rev. Mod. Phys.
82
,
1155
(
2010
).
17.
R.
Landauer
,
Phys. Lett. A
85
,
91
(
1981
).
18.
M.
Büttiker
,
Phys. Rev. Lett.
57
,
1761
(
1986
).
19.
B. J.
van Wees
,
H.
van Houten
,
C. W. J.
Beenakker
,
J. G.
Williamson
,
L. P.
Kouwenhoven
,
D.
van der Marel
, and
C. T.
Foxon
,
Phys. Rev. Lett.
60
,
848
(
1988
).
20.
I. V.
Krive
and
E. R.
Mucciolo
,
Phys. Rev. B
60
,
1429
(
1999
).
21.
L. G. C.
Rego
and
G.
Kirczenow
,
Phys. Rev. B
59
,
13080
(
1999
).
22.
L. G. C.
Rego
and
G.
Kirczenow
,
Phys. Rev. Lett.
81
,
232
(
1998
).
23.
M. P.
Blencowe
and
V.
Vitelli
,
Phys. Rev. A
62
,
052104
(
2000
).
24.
M.
Meschke
,
W.
Guichard
, and
J. P.
Pekola
,
Nature
444
,
187
(
2006
).
25.
A. V.
Timofeev
,
M.
Helle
,
M.
Meschke
,
M.
Möttönen
, and
J. P.
Pekola
,
Phys. Rev. Lett.
102
,
200801
(
2009
).
26.
S.
Jezouin
,
F. D.
Parmentier
,
A.
Anthore
,
U.
Gennser
,
A.
Cavanna
,
Y.
Jin
, and
F.
Pierre
,
Science
342
,
601
(
2013
).
27.
O.
Chiatti
,
J. T.
Nicholls
,
Y. Y.
Proskuryakov
,
N.
Lumpkin
,
I.
Farrer
, and
D. A.
Ritchie
,
Phys. Rev. Lett.
97
,
056601
(
2006
).
28.
M.
Banerjee
,
M.
Heiblum
,
A.
Rosenblatt
,
Y.
Oreg
,
D. E.
Feldman
,
A.
Stern
, and
V.
Umansky
,
Nature
545
,
75
(
2017
).
29.
K.
Schwab
,
E. A.
Henriksen
,
J. M.
Worlock
, and
M. L.
Roukes
,
Nature
404
,
974
(
2000
).
30.
C. S.
Yung
,
D. R.
Schmidt
, and
A. N.
Cleland
,
Appl. Phys. Lett.
81
,
31
(
2002
).
31.
A.
Tavakoli
,
K.
Lulla
,
T.
Crozes
,
N.
Mingo
,
E.
Collin
, and
O.
Bourgeois
,
Nat. Commun.
9
,
4287
(
2018
).
32.
D. H.
Santamore
and
M. C.
Cross
,
Phys. Rev. Lett.
87
,
115502
(
2001
).
33.
W. A.
Phillips
,
Rep. Prog. Phys.
50
,
1657
(
1987
).
34.
P. W.
Anderson
,
B. I.
Halperin
, and
C. M.
Varma
,
Philos. Mag.
25
,
1
(
1972
).
35.
M.
Bartkowiak
,
M.
Bazrafshan
,
C.
Fischer
,
A.
Fleischmann
, and
C.
Enss
,
Phys. Rev. Lett.
110
,
205502
(
2013
).
36.
Y.
Shalibo
,
Y.
Rofe
,
D.
Shwa
,
F.
Zeides
,
M.
Neeley
,
J. M.
Martinis
, and
N.
Katz
,
Phys. Rev. Lett.
105
,
177001
(
2010
).
37.
M.
Imboden
and
P.
Mohanty
,
Phys. Rep.
534
,
89
(
2014
).
38.
E. A.
Wollack
,
A. Y.
Cleland
,
P.
Arrangoiz-Arriola
,
T. P.
McKenna
,
R. G.
Gruenke
,
R. N.
Patel
,
W.
Jiang
,
C. J.
Sarabalis
, and
A. H.
Safavi-Naeini
,
Appl. Phys. Lett.
118
,
123501
(
2021
).
39.
A. K.
Hüttel
,
G. A.
Steele
,
B.
Witkamp
,
M.
Poot
,
L. P.
Kouwenhoven
, and
H. S. J.
van der Zant
,
Nano Lett.
9
,
2547
(
2009
).
40.
I.
Wilson-Rae
,
Phys. Rev. B
77
,
245418
(
2008
).
41.
O.
Maillet
,
D.
Cattiaux
,
X.
Zhou
,
R. R.
Gazizulin
,
O.
Bourgeois
,
A. D.
Fefferman
, and
E.
Collin
, arXiv:2009.03804 (
2020
).
42.
J.
Lisenfeld
,
G. J.
Grabovskij
,
C.
Muller
,
J. H.
Cole
,
G.
Weiss
, and
A. V.
Ustinov
,
Nat. Commun.
6
,
6182
(
2015
).
43.
J.
Burnett
 et al 
Nat. Commun.
5
,
4119
(
2014
).
44.
O.
Maillet
,
X.
Zhou
,
R. R.
Gazizulin
,
B. R.
Ilic
,
J. M.
Parpia
,
O.
Bourgeois
,
A. D.
Fefferman
, and
E.
Collin
,
ACS Nano
12
,
5753
(
2018
).
45.
M.
Sansa
 et al 
Nat. Nanotechnol.
11
,
552
(
2016
).
46.
L. G.
Remus
,
M. P.
Blencowe
, and
Y.
Tanaka
,
Phys. Rev. B
80
,
174103
(
2009
).
47.
Y.
Kubo
 et al 
Phys. Rev. Lett.
107
,
220501
(
2011
).
48.
A.
Bassi
,
K.
Lochan
,
S.
Satin
,
T. P.
Singh
, and
H.
Ulbricht
,
Rev. Mod. Phys.
85
,
471
(
2013
).
49.
K.
Lochan
and
T. P.
Singh
,
Phys. Lett. A
375
,
3747
(
2011
).
50.
W.
Hubert Zurek
,
Rev. Mod. Phys.
75
,
715
(
2003
).
51.
S.
Weinberg
,
Lectures on Quantum Mechanics
(
Cambridge University
,
Cambridge
,
2015
).
52.
J.
von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton Landmarks
,
Princeton
,
1932
).
53.
R.
Penrose
,
Gen. Relativ. Gravitation
28
,
581
(
1996
).
54.
P. C. E.
Stamp
,
Philos. Trans. R. Soc. A
370
,
4429
(
2012
).
55.
L.
Diósi
,
Phys. Rev. A
40
,
1165
(
1989
).
56.
G. C.
Ghirardi
,
P.
Pearle
, and
A.
Rimini
,
Phys. Rev. A
42
,
78
(
1990
).
57.
A. D.
O'Connell
 et al 
Nature
464
,
697
(
2010
).
58.
A.
Bienfait
 et al 
Science
364
,
368
(
2019
).
59.
G.
Andersson
,
M. K.
Ekström
, and
P.
Delsing
,
Phys. Rev. Lett.
124
,
240402
(
2020
).
60.
R.
Riedinger
,
A.
Wallucks
,
I.
Marinkovic
,
C.
Löschnauer
,
M.
Aspelmeyer
,
S.
Hong
, and
S.
Gröblacher
,
Nature
556
,
473
(
2018
).
61.
J.
Chan
,
T. P. M.
Alegre
,
A. H.
Safavi-Naeini
,
J. T.
Hill
,
A.
Krause
,
S.
Gröblacher
,
M.
Aspelmeyer
, and
O.
Painter
,
Nature
478
,
89
(
2011
).
62.
J. D.
Teufel
 et al 
Nature
475
,
359
(
2011
).
63.
U.
Delic
,
M.
Reisenbauer
,
K.
Dare
,
D.
Grass
,
V.
Vuletic
,
N.
Kiesel
, and
M.
Aspelmeyer
,
Science
367
,
892
(
2020
).
64.
V. B.
Braginsky
,
Y. I.
Vorontsov
, and
K. S.
Thorne
,
Science
209
,
547
(
1980
).
65.
C. M.
Caves
,
Phys. Rev. D
23
,
1693
(
1981
).
66.
B.
Abbott
 et al,
Phys. Rev. Lett.
116
,
241102
(
2016
).
67.
C. A.
Regal
,
J. D.
Teufel
, and
K. W.
Lehnert
,
Nat. Phys.
4
,
555
(
2008
).
68.
J. D.
Teufel
,
T.
Donner
,
M. A.
Castellanos-Beltran
,
J. W.
Harlow
, and
K. W.
Lehnert
,
Nat. Nanotechnol.
4
,
820
(
2009
).
69.
A. A.
Clerk
,
Phys. Rev. B
70
,
245306
(
2004
).
70.
L.
Planat
 et al 
Phys. Rev. X
10
,
021021
(
2020
).
71.
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
,
Rev. Mod. Phys.
86
,
1391
(
2014
).
72.
E.
Gil-Santos
 et al 
Phys. Rev. Lett.
118
,
063605
(
2017
).
73.
X.
Zhou
,
D.
Cattiaux
,
D.
Theron
, and
E.
Collin
,
J. Appl. Phys.
129
,
114502
(
2021
).
74.
A. A.
Clerk
,
F.
Marquardt
, and
K.
Jacobs
,
New J. Phys.
10
,
095010
(
2008
).
75.
E. E.
Wollman
,
C. U.
Lei
,
A. J.
Weinstein
,
J.
Suh
,
A.
Kronwald
,
F.
Marquardt
,
A. A.
Clerk
, and
K. C.
Schwab
,
Science
349
,
952
(
2015
).
76.
L.
Mercier de Lépinay
,
C. F.
Ockeloen-Korppi
,
M. J.
Woolleyand
, and
M. A.
Sillanpää
,
Science
372
,
625
(
2021
).
77.
Y.
Seis
,
T.
Capelle
,
E.
Langman
,
S.
Saarinen
,
E.
Planz
, and
A.
Schliesser
, arXiv:2107.05552 (
2021
).
78.
D.
Cattiaux
 et al 
Phys. Rev. Res.
2
,
033480
(
2020
).
79.
X.
Zhou
,
S.
Venkatachalam
,
R.
Zhou
,
H.
Xu
,
M.
Zaknoune
, and
A.
Fefferman
,
Nano Lett.
21
,
5738
(
2021
).
80.
D.
Bothner
,
S.
Yanai
,
A.
Iniguez-Rabago
,
M.
Yuan
,
Y. M.
Blanter
, and
G. A.
Steele
,
Nat. Commun.
11
,
1589
(
2020
).
81.
J. A.
Schreier
 et al 
Phys. Rev. B
77
,
180502(R)
(
2008
).
82.
M. H.
Devoret
and
R. J.
Schoelkopf
,
Science
339
,
1169
(
2013
).
83.
J.-M.
Pirkkalainen
,
S. U.
Cho
,
J.
Li
,
G. S.
Paraoanu
,
P. J.
Hakonen
, and
M. A.
Sillanpää
,
Nature
494
,
211
(
2013
).
84.
J. J.
Viennot
,
X.
Ma
, and
K. W.
Lehnert
,
Phys. Rev. Lett.
121
,
183601
(
2018
).
85.
D.
Leibfried
,
R.
Blatt
,
C.
Monroe
, and
D.
Wineland
,
Rev. Mod. Phys.
75
,
281
(
2003
).
86.
A. D.
Armour
,
M. P.
Blencowe
, and
K. C.
Schwab
,
Phys. Rev. Lett.
88
,
148301
(
2002
).
87.
A. D.
Armour
and
M. P.
Blencowe
,
New J. Phys.
10
,
095004
(
2008
).
88.
A.
Ourjoumtsev
,
H.
Jeong
,
R.
Tualle-Brouri
, and
P.
Grangier
,
Nature
448
,
784
(
2007
).
89.
C. F.
Ockeloen-Korppi
,
E.
Damskägg
,
J.-M.
Pirkkalainen
,
M.
Asjad
,
A. A.
Clerk
,
F.
Massel
,
M. J.
Woolley
, and
M. A.
Sillanpää
,
Nature
556
,
478
(
2018
).
90.
A. T.
Jones
,
C. P.
Scheller
,
J. R.
Prance
,
Y. B.
Kalyoncu
,
D. M.
Zumbühl
, and
R. P.
Haley
,
J. Low Temp. Phys.
201
,
772
(
2020
).
91.
L. B.
Nguyen
,
Y.-H.
Lin
,
A.
Somoroff
,
R.
Mencia
,
N.
Grabon
, and
V. E.
Manucharyan
,
Phys. Rev. X
9
,
041041
(
2019
).
92.
A.
Vinante
,
M.
Bahrami
,
A.
Bassi
,
O.
Usenko
,
G.
Wijts
, and
T. H.
Oosterkamp
,
Phys. Rev. Lett.
116
,
090402
(
2016
).
93.
G.
Pickett
and
C.
Enss
,
Nat. Rev. Mater.
3
,
18012
(
2018
).
94.
K. J.
Lulla
,
R. B.
Cousins
,
A.
Venkatesan
,
M. J.
Patton
,
A. D.
Armour
,
C. J.
Mellor
, and
J. R.
Owers-Bradley
,
New J. Phys.
14
,
113040
(
2012
).
95.
O.
Maillet
,
X.
Zhou
,
R.
Gazizulin
,
A. M.
Cid
,
M.
Defoort
,
O.
Bourgeois
, and
E.
Collin
,
Phys. Rev. B
96
,
165434
(
2017
).
96.
Y.
Zhang
and
M. I.
Dykman
,
Phys. Rev. B
92
,
165419
(
2015
).
97.
A. D.
Armour
,
M. P.
Blencowe
, and
K. C.
Schwab
,
Physica B
316–317
,
406
(
2002
).
98.
M. V.
Gustafsson
,
T.
Aref
,
A. F.
Kockum
,
M. K.
Ekström
,
G.
Johansson
, and
P.
Delsing
,
Science
346
,
207
(
2014
).
99.
I.
Golokolenov
,
D.
Cattiaux
,
S.
Kumar
,
M.
Sillanpää
,
L.
Mercier de Lépinay
,
A.
Fefferman
, and
E.
Collin
,
New J. Phys.
23
,
053008
(
2021
).
100.
J. F.
Poyatos
,
J. I.
Cirac
, and
P.
Zoller
,
Phys. Rev. Lett.
77
,
4728
(
1996
).
101.
K. W.
Murch
,
U.
Vool
,
D.
Zhou
,
S. J.
Weber
,
S. M.
Girvin
, and
I.
Siddiqi
,
Phys. Rev. Lett.
109
,
183602
(
2012
).
102.
A.
Metelmann
and
A. A.
Clerk
,
Phys. Rev. X
5
,
021025
(
2015
).
103.
N. R.
Bernier
,
L. D.
Toth
,
A.
Koottandavida
,
M. A.
Ioannou
,
D.
Malz
,
A.
Nunnenkamp
,
A. K.
Feofanov
, and
T. J.
Kippenberg
,
Nat. Commun.
8
,
604
(
2017
).
104.
W.
Hease
,
A.
Rueda
,
R.
Sahu
,
M.
Wulf
,
G.
Arnold
,
H. G.
Schwefel
, and
J. M.
Fink
,
PRX Quantum
1
,
020315
(
2020
).
105.
A. N.
Cleland
,
Foundations of Nanomechanics
(
Springer
,
New York
,
2003
).
106.
J. M.
Ziman
,
Electrons and Phonons
(
Clarendon
,
Oxford
,
2001
).
107.
J. M.
Martinis
,
M.
Ansmann
, and
J.
Aumentado
,
Phys. Rev. Lett.
103
,
097002
(
2009
).
108.
E.
Nazaretski
,
R. D.
Merithew
,
V. O.
Kostroun
,
A. T.
Zehnder
,
R. O.
Pohl
, and
J. M.
Parpia
,
Phys. Rev. Lett.
92
,
245502
(
2004
).
109.
A.
Tantot
 et al 
Phys. Rev. Lett.
111
,
154301
(
2013
).
110.
D.
Cattiaux
 et al,
Nat. Commun.
12
,
6182
(
2021
).
111.
A. J.
Weinstein
,
C. U.
Lei
,
E. E.
Wollman
,
J.
Suh
,
A.
Metelmann
,
A. A.
Clerk
, and
K. C.
Schwab
,
Phys. Rev. X
4
,
041003
(
2014
).
112.
A.
Fontana
,
R.
Pedurand
,
V.
Dolique
,
G.
Hansali
, and
L.
Bellon
,
Phys. Rev. E
103
,
062125
(
2021
).
113.
D. A.
Rodrigues
and
A. D.
Armour
,
Phys. Rev. Lett.
104
,
053601
(
2010
).
114.
S. P.
Kumar
and
M. B.
Plenio
,
Phys. Rev. A
97
,
063855
(
2018
).
115.
L.
Diosi
,
Phys. Rev. Lett.
114
,
050403
(
2015
).
116.
A.
Vinante
and
H.
Ulbricht
,
AVS Quantum Sci.
3
,
045602
(
2021
).
117.
A.
Pontin
,
N. P.
Bullier
,
M.
Toros
, and
P. F.
Barker
,
Phys. Rev. Res.
2
,
023349
(
2020
).
118.
R.
Landauer
,
Nature
392
,
658
(
1998
).
119.
M. L.
Roukes
,
Physica B
263–264
,
1
(
1999
).
120.
M. P.
Blencowe
,
Phys. Rev. B
59
,
4992
(
1999
).
121.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
, 3rd ed. (
Elsevier Ltd
.,
New York
,
1980
).
122.
A.
Fefferman
, Grants H2020 ERC StG and UNIGLASS No. 714692.
123.
B.
Golding
and
J. E.
Graebner
,
Phys. Rev. Lett.
37
,
852
(
1976
).
124.
X.
Zhou
 et al 
Phys. Rev. Appl.
12
,
044066
(
2019
).
125.
G.
Ithier
 et al 
Phys. Rev. B
72
,
134519
(
2005
).
126.
D.
Kleckner
,
I.
Pikovski
,
E.
Jeffrey
,
L.
Ament
,
E.
Eliel
,
J.
van den Brink
, and
D.
Bouwmeester
,
New J. Phys.
10
,
095020
(
2008
).
127.
M. F.
Gely
and
G. A.
Steele
,
AVS Quantum Sci.
3
,
035601
(
2021
).
128.
P. M.
Alexander
 et al 
Nat. Commun.
12
,
1779
(
2021
).
You do not currently have access to this content.