Roger Penrose's Weyl curvature hypothesis states that the Weyl curvature is small at past singularities, but not at future singularities. We review the motivations for this conjecture and present estimates for the entropy of our Universe. We then extend this hypothesis to the quantum regime by demanding that the initial state of primordial quantum fluctuations be the adiabatic vacuum in a (quasi-)de Sitter space. We finally attempt a justification of this quantum version from a fundamental theory of quantum gravity and speculate on its consequences in the case of a classically recollapsing universe.
References
1.
Brizuela
, D.
, Kiefer
, C.
, and Krämer
, M.
, Phys. Rev. D
94
, 123527
(2016
).2.
3.
Egan
, C. A.
, and Lineweaver
, C. H.
, Astrophys. J.
710
, 1825
(2010
).4.
G. W.
Gibbons
, and S. W.
Hawking
, Phys. Rev. D
15
, 2738
(1977
).5.
Hu
, B.-L.
, Universe
7
, 424
(2021
).6.
Joos
, E.
, Zeh
, H. D.
, Kiefer
, C.
, Giulini
, D.
, Kupsch
, J.
, and Stamatescu
, I.-O.
, Decoherence and the Appearance of a Classical World in Quantum Theory
, 2nd ed. (Springer
, Berlin
, 2003
).7.
8.
Kiefer
, C.
, “Can the arrow of time be understood from quantum cosmology?
,” in The Arrows of Time
, edited by L.
Mersini-Houghton
, and R.
Vaas
(Springer
, Heidelberg
, 2012b
), pp. 191
–203
.9.
Kiefer
, C.
, and Kolland
, G.
, Gen. Relativ. Gravitation
40
, 1327
–1339
(2008
).10.
Kiefer
, C.
, and Nikolić
, B.
, “Notes on semiclassical Weyl gravity
,” in Fundamental Theories of Physics
(Springer
, New York
, 2017
), Vol. 187
, pp. 127
–143
.11.
Kiefer
, C.
, and Zeh
, H. D.
, Phys. Rev. D
51
, 4145
–4153
(1995
).12.
Kiefer
, C.
, Lohmar
, I.
, Polarski
, D.
, and Starobinsky
, A. A.
, Classical Quantum Gravity
24
, 1699
(2007
).13.
Krauss
, L. M.
, and Wilczek
, F.
, Phys. Rev. D
89
, 047501
(2014
).14.
Newman
,E.
, and Penrose
,R.
, J. Math. Phys.
3
, 566
(1962
);15.
Penrose
, R.
, “Space-time singularities
,” in Proceedings of the First Marcel Grossmann Meeting on General Relativity
, edited by R.
Ruffini
(North Holland
, Amsterdam
, 1977
), pp. 173
–181
.16.
Penrose
, R.
, “Singularities and time-asymmetry
,” in General Relativity: An Einstein Centenary Survey
, edited by S. W.
Hawking
, and W.
Israel
(Cambridge University
, Cambridge
, 1979
), pp. 581
–638
.17.
Penrose
, R.
, “Time-asymmetry and quantum gravity
,” in Quantum Gravity 2: A Second Oxford Symposium
, edited by C. J.
Isham
, R.
Penrose
, and D. W.
Sciama
(Clarendon
, Oxford
, 1981
), pp. 244
–272
.18.
Penrose
, R.
, “Gravity and state vector reduction
,” in Quantum Concepts in Space and Time
, edited by R.
Penrose
, and C. J.
Isham
(Oxford University
, Oxford
, 1986
), pp. 129
–146
.19.
Penrose
, R.
, Cycles of Time: An Extraordinary New View of the Universe
(Alfred A. Knopf
, New York
, 2011
).23.
Peres, A., in Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1995).
20.
Starobinsky
, A. A.
, JETP Lett.
30
, 682
(1979
).21.
22.
Zeh
, H. D.
, The Physical Basis of the Direction of Time
, 5th ed. (Springer
, Berlin
, 2007
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.