Roger Penrose's Weyl curvature hypothesis states that the Weyl curvature is small at past singularities, but not at future singularities. We review the motivations for this conjecture and present estimates for the entropy of our Universe. We then extend this hypothesis to the quantum regime by demanding that the initial state of primordial quantum fluctuations be the adiabatic vacuum in a (quasi-)de Sitter space. We finally attempt a justification of this quantum version from a fundamental theory of quantum gravity and speculate on its consequences in the case of a classically recollapsing universe.

1.
Brizuela
,
D.
,
Kiefer
,
C.
, and
Krämer
,
M.
,
Phys. Rev. D
94
,
123527
(
2016
).
2.
Eddington
,
S. A. S.
,
Nature
127
,
447
(
1931
).
3.
Egan
,
C. A.
, and
Lineweaver
,
C. H.
,
Astrophys. J.
710
,
1825
(
2010
).
4.
G. W.
Gibbons
, and
S. W.
Hawking
,
Phys. Rev. D
15
,
2738
(
1977
).
5.
Hu
,
B.-L.
,
Universe
7
,
424
(
2021
).
6.
Joos
,
E.
,
Zeh
,
H. D.
,
Kiefer
,
C.
,
Giulini
,
D.
,
Kupsch
,
J.
, and
Stamatescu
,
I.-O.
,
Decoherence and the Appearance of a Classical World in Quantum Theory
, 2nd ed. (
Springer
,
Berlin
,
2003
).
7.
Kiefer
,
C.
,
Quantum Gravity
, 3rd ed. (
Oxford University
,
Oxford
,
2012a
).
8.
Kiefer
,
C.
, “
Can the arrow of time be understood from quantum cosmology?
,” in
The Arrows of Time
, edited by
L.
Mersini-Houghton
, and
R.
Vaas
(
Springer
,
Heidelberg
,
2012b
), pp.
191
203
.
9.
Kiefer
,
C.
, and
Kolland
,
G.
,
Gen. Relativ. Gravitation
40
,
1327
1339
(
2008
).
10.
Kiefer
,
C.
, and
Nikolić
,
B.
, “
Notes on semiclassical Weyl gravity
,” in
Fundamental Theories of Physics
(
Springer
,
New York
,
2017
), Vol.
187
, pp.
127
143
.
11.
Kiefer
,
C.
, and
Zeh
,
H. D.
,
Phys. Rev. D
51
,
4145
4153
(
1995
).
12.
Kiefer
,
C.
,
Lohmar
,
I.
,
Polarski
,
D.
, and
Starobinsky
,
A. A.
,
Classical Quantum Gravity
24
,
1699
(
2007
).
13.
Krauss
,
L. M.
, and
Wilczek
,
F.
,
Phys. Rev. D
89
,
047501
(
2014
).
14.
Newman
,
E.
, and
Penrose
,
R.
,
J. Math. Phys.
3
,
566
(
1962
);
Newman
,
E.
, and
Penrose
,
R.
, Erratum,
J. Math. Phys.
4
,
998
(
1963
).
15.
Penrose
,
R.
, “
Space-time singularities
,” in
Proceedings of the First Marcel Grossmann Meeting on General Relativity
, edited by
R.
Ruffini
(
North Holland
,
Amsterdam
,
1977
), pp.
173
181
.
16.
Penrose
,
R.
, “
Singularities and time-asymmetry
,” in
General Relativity: An Einstein Centenary Survey
, edited by
S. W.
Hawking
, and
W.
Israel
(
Cambridge University
,
Cambridge
,
1979
), pp.
581
638
.
17.
Penrose
,
R.
, “
Time-asymmetry and quantum gravity
,” in
Quantum Gravity 2: A Second Oxford Symposium
, edited by
C. J.
Isham
,
R.
Penrose
, and
D. W.
Sciama
(
Clarendon
,
Oxford
,
1981
), pp.
244
272
.
18.
Penrose
,
R.
, “
Gravity and state vector reduction
,” in
Quantum Concepts in Space and Time
, edited by
R.
Penrose
, and
C. J.
Isham
(
Oxford University
,
Oxford
,
1986
), pp.
129
146
.
19.
Penrose
,
R.
,
Cycles of Time: An Extraordinary New View of the Universe
(
Alfred A. Knopf
,
New York
,
2011
).
23.
Peres, A., in Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1995).
20.
Starobinsky
,
A. A.
,
JETP Lett.
30
,
682
(
1979
).
21.
Wheeler
,
J. A.
,
Monist
47
(
1
),
40
(
1962
).
22.
Zeh
,
H. D.
,
The Physical Basis of the Direction of Time
, 5th ed. (
Springer
,
Berlin
,
2007
).
You do not currently have access to this content.