In spherical symmetry, solutions of the semiclassical Einstein equations belong to one of two possible classes. Both classes contain solutions that—depending on the dynamic behavior of the horizon—describe evaporating physical black holes or expanding white holes (trapped/anti-trapped regions that form in finite time of a distant observer). These solutions are real-valued only if the null energy condition (NEC) is violated in the vicinity of the Schwarzschild sphere. We review their properties and describe the only consistent black hole formation scenario. While the curvature scalars are finite on the outer apparent/anti-trapping horizon, it is still a weakly singular surface. This singularity manifests itself in a mild firewall. Near the inner apparent horizon, the NEC is satisfied. Models of static regular black holes are known to be unstable, but since dynamic models of regular black holes are severely constrained by self-consistency requirements, their stability requires further investigation.

1.
W.
Israel
, “
Dark stars: The evolution of an idea
,” in
Three Hundred Years of Gravitation
, edited by
S. W.
Hawking
and
W.
Israel
(
Cambridge University
,
Cambridge
,
1986
), pp.
199
276
.
2.
J. M. M.
Senovilla
and
D.
Garfinkle
,
Classical Quantum Gravity
32
,
124008
(
2015
).
3.
K.
Landsman
,
Found. Phys.
51
,
42
(
2021
).
4.
R.
Penrose
,
Phys. Rev. Lett.
14
,
57
(
1965
).
5.
E.
Curiel
,
Nat. Astron.
3
,
27
(
2019
).
6.
R.
Penrose
and
W.
Rindler
,
Spinors and Spacetime
(
Cambridge University
,
Cambridge
,
1984
), Vol.
1
.
7.
V.
Cardoso
and
P.
Pani
,
Living Rev. Relativ.
22
,
4
(
2019
).
8.
L.
Barack
,
V.
Cardoso
,
S.
Nissanke
, and
T. P.
Sotiriou
,
Class. Quantum Gravity
36
,
143001
(
2019
).
9.
M.
Visser
,
Phys. Rev. D
90
,
127502
(
2014
).
10.
R.
Penrose
, “
Structure of space-time
,” in
Batelle Rencontres: 1967 Lectures in Mathematics and Physics
, edited by
C.
DeWitt
and
J. A.
Wheeler
(
W. A. Benjamin
,
San Francisco
,
1968
), pp.
121
235
.
11.
V. P.
Frolov
,
J. High Energy Phys.
5
,
49
(
2014
).
12.
S. W.
Hawking
and
G. F. R.
Ellis
,
The Large Scale Structure of Space-Time
(
Cambridge University
,
Cambridge
,
1973
).
13.
V. P.
Frolov
and
I. D.
Novikov
,
Black Holes: Basic Concepts and New Developments
(
Kluwer
,
Dordrecht
,
1998
).
14.
V.
Faraoni
,
Cosmological and Black Hole Apparent Horizons
(
Springer
,
Heidelberg
,
2015
).
15.
V.
Faraoni
,
G. F. R.
Ellis
,
J. T.
Firouzjaee
,
A.
Helou
, and
I.
Musco
,
Phys. Rev. D
95
,
024008
(
2017
).
16.
V.
Baccetti
,
R. B.
Mann
,
S.
Murk
, and
D. R.
Terno
,
Phys. Rev. D
99
,
124014
(
2019
).
17.
D. R.
Terno
,
Phys. Rev. D
100
,
124025
(
2019
).
18.
D. R.
Terno
,
Phys. Rev. D
101
,
124053
(
2020
).
19.
S.
Murk
and
D. R.
Terno
,
Phys. Rev. D
103
,
064082
(
2021
).
20.
P. K.
Dahal
and
D. R.
Terno
,
Phys. Rev. D
102
,
124032
(
2020
).
21.
N. D.
Birrel
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge University
,
Cambridge
,
1984
).
22.
R.
Penrose
, “
Singularities and time-asymmetry
,” in
General Relativity: An Einstein Centenary Survey
, edited by
S. W.
Hawking
and
W.
Israel
(
Cambridge University
,
Cambridge
,
1979
), pp.
581
638
.
23.
Y.
Choquet-Bruhat
,
General Relativity and the Einstein Equations
(
Oxford University
,
Oxford
,
2009
).
24.
S. W.
Hawking
,
Nature
248
,
30
(
1974
).
25.
R. M.
Wald
,
Living Rev. Relativ.
4
,
6
(
2001
).
26.
D.
Page
,
New J. Phys.
7
,
203
(
2005
).
27.
S. W.
Hawking
,
Commun. Math. Phys.
43
,
199
(
1975
).
28.
J. C.
Schindler
,
A.
Aguirre
, and
A.
Kuttner
,
Phys. Rev. D
101
,
024010
(
2020
).
29.
T. A.
Roman
and
P. G.
Bergman
,
Phys. Rev. D
28
,
1265
(
1983
).
30.
J. M.
Bardeen
, in
Abstracts of the 5th International Conference on Gravitation and the Theory of Relativity
, edited by
V. A.
Fock
 et al (
Tbilisi University
,
Tbilisi
,
1968
), p.
174
.
31.
S. A.
Hayward
,
Phys. Rev. Lett.
96
,
031103
(
2006
).
32.
R. B.
Mann
,
Black Holes: Thermodynamics, Information, and Firewalls
(
Springer
,
New York
,
2015
).
33.
A.
Almheiri
,
T.
Hartman
,
J.
Maldacena
,
E.
Shaghoulian
, and
A.
Tajdini
,
Rev. Mod. Phys.
93
,
035002
(
2021
).
34.
J.
Earman
,
Int. Stud. Philos. Sci.
18
,
173
(
2004
).
35.
R. B.
Mann
,
S.
Murk
, and
D. R.
Terno
, arXiv:2109.13939 (
2021
).
36.
A.
Ashtekar
,
Universe
6
,
21
(
2020
).
37.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Oxford University
,
Oxford
,
1992
).
38.
H.
Kodama
,
Prog. Theor. Phys.
63
,
1217
(
1980
).
39.
G.
Abreu
and
M.
Visser
,
Phys. Rev. D
82
,
044027
(
2010
).
40.
C. W.
Misner
and
D. H.
Sharp
,
Phys. Rev.
136
,
B571
(
1964
).
41.
J. M.
Bardeen
,
Phys. Rev. Lett.
46
,
382
(
1981
).
42.
H.
Stephani
,
D.
Kramer
,
M. A. H.
MacCallum
,
C.
Hoenselaers
, and
E.
Herlt
,
Exact Solutions of Einstein's Field Equations
, 2nd ed. (
Cambridge University
,
Cambridge
,
2003
).
43.
F. J.
Tipler
,
C. J. S.
Clarke
, and
G. F. R.
Ellis
, “
Singularities and horizons: A review article
,” in
General Relativity and Gravitation: one Hundred Years after the Birth of Albert Einstein
, edited by
A.
Held
(
Plenum
,
New York
,
1980
), Vol.
2
, p.
97
.
44.
G. F. R.
Ellis
and
A. R.
King
,
Commun. Math. Phys.
38
,
119
(
1974
).
45.
J.
Carminati
and
R. G.
McLenaghan
,
J. Math. Phys.
32
,
3135
(
1991
).
46.
S. M.
Christensen
and
S. A.
Fulling
,
Phys. Rev. D
15
,
2088
(
1977
).
47.
W. G.
Unruh
,
Phys. Rev. D
14
,
870
(
1976
).
48.
M.
Visser
,
Phys. Rev. D
56
,
936
(
1997
).
49.
A.
Levi
and
A.
Ori
,
Phys. Rev. Lett.
117
,
231101
(
2016
).
50.
A.
Levi
,
Phys. Rev. D.
95
,
025007
(
2017
).
51.
E.-A.
Kontou
and
K.
Sanders
,
Class. Quantum Gravity
37
,
193001
(
2020
).
52.
D.
Núñez
,
H.
Quevedo
, and
D.
Sudarsky
,
Phys. Rev. Lett.
76
,
571
(
1996
).
53.
A. E.
Mayo
and
J. D.
Bekenstein
,
Phys. Rev. D
54
,
5059
(
1996
).
54.
A.
Bonanno
and
M.
Reuter
,
Phys. Rev. D
73
,
083005
(
2006
).
55.
V. P.
Frolov
,
Phys. Rev. D
94
,
104056
(
2016
).
56.
R.
Carballo-Rubio
,
F. D.
Filippo
,
S.
Liberati
, and
M.
Visser
,
Phys. Rev. D
101
,
084047
(
2020
).
57.
P. S.
Joshi
and
D.
Malafarina
,
Int. J. Mod. Phys. D
20
,
2641
(
2011
).
58.
S. A.
Hayward
,
Phys. Rev. D
49
,
6467
(
1994
).
59.
E.
Poisson
,
A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics
(
Cambridge University
,
Cambridge, England
,
2004
).
60.
P.
Hájíček
,
Phys. Rev. D
36
,
1065
(
1987
).
61.
C.
Barceló
,
S.
Liberati
,
S.
Sonego
, and
M.
Visser
,
Classical Quantum Gravity
23
,
5341
(
2006
).
62.
T.
Vachaspati
,
D.
Stojkovic
, and
L. M.
Krauss
,
Phys. Rev. D
76
,
024005
(
2007
).
63.
C.
Barceló
,
S.
Liberati
,
S.
Sonego
, and
M.
Visser
,
Phys. Rev. D
83
,
041501(R)
(
2011
).
64.
D. N.
Page
,
Phys. Rev. D
13
,
198
(
1976
).
65.
R.
Carballo-Rubio
,
Phys. Rev. Lett.
120
,
061102
(
2018
).
66.
P.
Binétruy
,
A.
Helou
, and
F.
Lamy
,
Phys. Rev. D
98
,
064058
(
2018
).
67.
J. W.
York
, Jr.
,
Phys. Rev. D
28
,
2929
(
1983
).
68.
Black Holes: The Membrane Paradigm
, edited by
K. S.
Thorne
,
R. H.
Price
, and
D. A.
MacDonald
(
Yale University
,
New Haven, CT
,
1986
).
69.
C. J.
Fewster
, “
Quantum energy inequalities
,” in
Wormholes, Warp Drives and Energy Conditions
, edited by
F. N. S.
Lobo
(
Springer
,
New York
,
2017
), p.
215
.
70.
G. R. F.
Ellis
and
B. G.
Schmidt
,
Gen. Relativ. Gravitation
8
,
915
(
1977
).
71.
E.
Poisson
and
W.
Israel
,
Phys. Rev. Lett.
63
,
1663
(
1989
).
72.
A.
Ori
,
Phys. Rev. Lett.
67
,
789
(
1991
).
73.
A. J. S.
Hamilton
and
P. P.
Avelino
,
Phys. Rep.
495
,
1
(
2010
).
74.
A.
Bonanno
,
A.-P.
Khosravi
, and
F.
Saueressig
,
Phys. Rev. D
103
,
124027
(
2021
).
75.
R.
Carballo-Rubio
,
F. D.
Filippo
,
S.
Liberati
,
C.
Pacilio
, and
M.
Visser
,
J. High Energy Phys.
7
,
23
(
2018
).
76.
R.
Carballo-Rubio
,
F. D.
Filippo
,
S.
Liberati
,
C.
Pacilio
, and
M.
Visser
,
J. High Energy Phys.
5
,
132
(
2021
).
You do not currently have access to this content.