Gravitational decoherence (GD) refers to the effects of gravity in actuating the classical appearance of a quantum system. Because the underlying processes involve issues in general relativity (GR), quantum field theory (QFT), and quantum information, GD has fundamental theoretical significance. There is a great variety of GD models, many of them involving physics that diverge from GR and/or QFT. This overview has two specific goals along with one central theme: (i) present theories of GD based on GR and QFT and explore their experimental predictions; (ii) place other theories of GD under the scrutiny of GR and QFT, and point out their theoretical differences. We also describe how GD experiments in space in the coming decades can provide evidence at two levels: (a) discriminate alternative quantum theories and non-GR theories; (b) discern whether gravity is a fundamental or an effective theory.

1.
F.
Karolyhazy
,
Nuovo Cimento A
42
,
390
(
1966
).
3.
R.
Penrose
, “
Gravity and state vector reduction
,” in
Quantum Concepts in Space and Time
, edited by
R.
Penrose
and
C. J.
Isham
(
Clarendon
,
Oxford
,
1986
);
R.
Penrose
, “
Gravity and state vector reduction
,” in
Gen. Relativ. Gravitation
28
,
581
(
1996
).
4.
C.
Anastopoulos
and
B. L.
Hu
,
Classical Quantum Gravity
32
,
165022
(
2015
).
5.
R. B.
Griffiths
,
J. Stat. Phys.
36
,
219
(
1984
);
R. B.
Griffiths
,
Consistent Quantum Theory
(
Cambridge University
,
Cambridge
,
2002
).
6.
R.
Omnés
,
J. Stat. Phys.
53
,
893
(
1988
);
R.
Omnés
,
Rev. Mod. Phys.
64
,
339
(
1992
);
R.
Omnés
,
The Interpretation of Quantum Mechanics
(
Princeton University
,
Princeton
,
1994
).
7.
M.
Gell-Mann
and
J. B.
Hartle
, “
Quantum mechanics in the light of quantum cosmology
,” in
Complexity, Entropy, and the Physics of Information
, edited by
W.
Zurek
(
Addison-Wesley
,
Reading
,
1990
);
M.
Gell-Mann
and
J. B.
Hartle
, “
Quantum mechanics in the light of quantum cosmology
,” in
Phys. Rev. D
47
,
3345
(
1993
).
8.
F.
Dowker
and
A.
Kent
,
J. Stat. Phys.
82
,
1575
(
1996
).
9.
E.
Okon
and
D.
Sudarsky
,
Stud. His. Philos. Mod. Phys.
48
,
7
(
2014
);
R. B.
Griffiths
, arXiv:1501.04813 (
2015
);
E.
Okon
and
D.
Sudarsky
,
Stud. Hist. Philos. Mod. Phys.
52
,
217
(
2015
).
10.
W. H.
Zurek
,
Phys. Rev. D
26
,
1862
(
1982
).
11.
E.
Joos
and
H. D.
Zeh
,
Z. Phys. B
59
,
223
(
1985
).
12.
13.
J. S.
Schwinger
,
J. Math. Phys.
2
,
407
(
1961
).
14.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
15.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
16.
B. L.
Hu
,
J. P.
Paz
, and
Y.
Zhang
,
Phys. Rev. D
45
,
2843
(
1992
).
17.
C.
Anastopoulos
,
Int. J. Theor. Phys.
41
,
1573
(
2002
);
M.
Schlosshauer
,
Rev. Mod. Phys.
76
,
1267
(
2005
);
M.
Schlosshauer
,
Phys. Rep.
831
,
57
(
2019
).
18.
G. C.
Ghirardi
,
A.
Rimini
, and
T.
Weber
,
Phys. Rev. D
34
,
470
(
1986
).
P.
Pearle
,
Int. J. Theor. Phys.
18
,
489
(
1979
);
20.
G. C.
Ghirardi
,
P.
Pearle
, and
A.
Rimini
,
Phys. Rev. A
42
,
78
(
1990
);
[PubMed]
G. C.
Ghirardi
and
A.
Bassi
,
Phys. Rep.
379
,
257
(
2003
).
21.
R.
Tumulka
,
Proc. R. Soc.
462
,
1897
(
2006
);
D. J.
Bedingham
,
Found. Phys.
41
,
686
(
2011
);
D.
Bedingham
,
D.
Dürr
,
G. C.
Ghirardi
,
S.
Goldstein
,
R.
Tumulka
, and
N.
Zangh
,
J. Stat. Phys.
154
,
623
(
2014
);
P.
Pearle
,
Phys. Rev.
91
,
105012
(
2015
).
22.
C.
Jones
,
G.
Gasbarri
, and
A.
Bassi
,
J. Phys. A
54
,
295306
(
2021
).
23.
A.
Bassi
,
A.
Groardt
, and
H.
Ulbricht
,
Classical Quantum Gravity
34
,
193002
(
2017
).
24.
25.
C.
Anastopoulos
and
B. L.
Hu
,
Classical Quantum Gravity
30
,
165007
(
2013
).
26.
27.
I.
Pikovski
,
M.
Zych
,
F.
Costa
, and
C.
Brukner
,
Nat. Phys.
11
,
668
(
2015
);
I.
Pikovski
,
M.
Zych
,
F.
Costa
, and
C.
Brukner
,
New J. Phys.
19
,
025011
(
2017
).
28.
29.
C.
Anastopoulos
and
N.
Savvidou
,
Phys. Rev. E
83
,
021118
(
2011
).
30.
S.
Donadi
,
K.
Piscicchia
,
C.
Curceanu
 et al.,
Nat. Phys.
17
,
74
(
2021
).
31.
C.
Anastopoulos
,
M.
Lagouvardos
, and
K.
Savvidou
,
Classical Quantum Gravity
38
,
155012
(
2021
).
32.
C.
Moller
, “
Les theories relativistes de la gravitation
,” in
Colloques Internationaux CNRX 91
, edited by
A.
Lichnerowicz
and
M.-A.
Tonnelat
(
CNRS
,
Paris
,
1962
).
34.
M.
Bahrami
,
A.
Groardt
,
S.
Donadi
, and
A.
Bassi
,
New J. Phys.
16
,
115007
(
2014
).
36.
J. B.
Hartle
and
G. T.
Horowitz
,
Phys. Rev. D
24
,
257
(
1981
).
37.
C.
Anastopoulos
and
B. L.
Hu
,
New J. Phys.
16
,
085007
(
2014
).
38.
N. D.
Birrell
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge University
,
Cambridge
,
1982
).
39.
J.
Ellis
, J.S.Hagelin,
D. V.
Nanopoulos
, and
M.
Srednicki
,
Nucl. Phys. B
241
,
3
(
1984
).
40.
W. G.
Unruh
and
R. M.
Wald
,
Rep. Prog. Phys.
80
,
092002
(
2017
).
41.
J.
Ellis
,
N. E.
Mavromatos
, and
D. V.
Nanopoulos
,
Phys. Lett.
293
,
37
(
1992
).
42.
L. J.
Garay
,
Phys. Rev. Lett.
80
,
2508
(
1998
).
43.
R.
Gambini
,
R.
Porto
, and
J.
Pullin
,
Phys. Rev. Lett.
93
,
240401
(
2004
);
[PubMed]
R.
Gambini
,
R.
Porto
, and
J.
Pullin
,
New J. Phys.
6
,
45
(
2004
).
G. J.
Milburn
,
Phys. Rev.
44
,
5401
(
1991
).
45.
R.
Bonifacio
,
Nuovo Cimento B
114
,
473
(
1999
).
46.
P. M. V. B.
Barone
and
A. O.
Caldeira
,
Phys. Rev. A
43
,
57
(
1991
);
[PubMed]
C.
Anastopoulos
and
A.
Zoupas
,
Phys. Rev. D
58
,
105006
(
1998
);
P. R.
Johnson
and
B. L.
Hu
,
Phys. Rev. D
65
,
065015
(
2002
).
47.
B. L.
Hu
and
E.
Verdaguer
,
Semiclassical and Stochastic Gravity–Quantum Field Effects on Curved Spacetimes
(
Cambridge University
,
Cambridge
,
2020
).
48.
E. A.
Calzetta
and
B. L.
Hu
,
Phys. Rev. D
49
,
6636
(
1994
);
B. L.
Hu
and
A.
Matacz
,
Phys. Rev. D
51
,
1577
(
1995
);
E. A.
Calzetta
,
A.
Campos
, and
E.
Verdaguer
,
Phys. Rev. D
56
,
2163
(
1997
);
F. C.
Lombardo
and
F. D.
Mazzitelli
,
Phys. Rev. D
55
,
3889
(
1997
).
49.
R.
Martín
and
E.
Verdaguer
,
Phys. Lett. B
465
,
113
(
1999
);
R.
Martín
and
E.
Verdaguer
,
Phys. Rev. D
61
,
124024
(
2000
);
R.
Martín
and
E.
Verdaguer
,
Phys. Rev. D
61
,
26
(
2000
).
50.
B. L.
Hu
,
A.
Roura
, and
E.
Verdaguer
,
Phys. Rev. D
70
,
044002
(
2004
).
51.
T. C.
Ralph
,
G. J.
Milburn
, and
T.
Downes
,
Phys. Rev.
79
,
022121
(
2009
).
52.
T. J.
Ralph
and
J.
Pienar
,
New J. Phys.
16
,
085008
(
2014
).
53.
54.
S. W.
Hawking
,
Phys. Rev. D
46
,
603
(
1992
).
55.
B. S.
Kay
,
M. J.
Radzikowski
, and
R. M.
Wald
,
Commun. Math. Phys.
183
,
533
(
1997
).
56.
J. A.
Wheeler
,
Phys. Rev.
97
,
511
(
1955
).
57.
S.
Reynaud
,
B.
Lamine
,
A.
Lambrecht
,
P.
Maia Neto
, and
M. T.
Jaekel
,
Gen. Relativ. Gravitation
36
,
2271
(
2004
).
59.
T.
Oniga
and
C. H.-T.
Wang
,
Phys. Rev. D
93
,
044027
(
2016
).
60.
C.
Anastopoulos
,
Phys. Rev. D
54
,
1600
(
1996
).
61.
Z.
Haba
and
H.
Kleinert
,
Int. J. Mod. Phys. A
17
,
3729
(
2002
).
62.
S.
Reynaud
,
B.
Lamine
,
A.
Lambrecht
,
P. M.
Neto
, and
M. T.
Jaekel
,
Int. J. Mod. Phys. A
17
,
1003
(
2002
).
63.
W. L.
Power
and
I. C.
Percival
,
Proc. R. Soc. London, Ser. A
456
,
955
(
2000
).
64.
P.
Kok
and
U.
Yurtsever
,
Phys. Rev. D
68
,
085006
(
2003
).
65.
H. P.
Breuer
,
E.
Göklü
, and
C.
Lämmerzahl
,
Classical Quantum Gravity
26
,
105012
(
2009
).
66.
L.
Asprea
,
G.
Gasbarri
,
H.
Ulbricht
, and
A.
Bassi
,
Phys. Rev. Lett.
126
,
200403
(
2021
).
67.
Y. Y.
Fein
 et al.,
Nat. Phys.
15
,
1242
(
2019
).
68.
S.
Adler
,
Quantum Theory as an Emergent Phenomenon
(
Cambridge University
,
Cambridge
,
2004
).
70.
M.
Lagouvardos
and
C.
Anastopoulos
,
Classical Quantum Gravity
38
,
115012
(
2021
).
71.
R.
Kaltenbaek
 et al.,
EPJ Quantum Technol.
3
,
5
(
2016
).
72.
R.
Kaltenbaek
 et al.,
Exp. Astron.
34
,
123
(
2012
).
73.
D.
Giulini
and
A.
Groardt
,
Classical Quantum Gravity
28
,
195026
(
2011
).
74.
A.
Groardt
,
Phys. Rev. A
94
,
022101
(
2016
).
75.
L.
Mazzarella
 et al.,
Proc. SPIE
11835
,
118350J
(
2021
);
M.
Mohageg
 et al., arXiv:2111.15591 (
2021
).
76.
A.
Bassi
,
K.
Lochan
,
S.
Satin
,
T. P.
Singh
, and
H.
Ulbricht
,
Rev. Mod. Phys.
85
,
471
(
2013
);
G.
Gasbarri
,
A.
Belenchia
,
M.
Carlesso
 et al.,
Commun. Phys.
4
,
155
(
2021
);
S.
Kanno
,
J.
Soda
, and
J.
Tokuda
,
Phys. Rev.
104
,
083516
(
2021
).
You do not currently have access to this content.