We challenge the view that there is a basic conflict between the fundamental principles of Quantum Theory and General Relativity and, in particular, the fact that a superposition of massive bodies would lead to a violation of the Equivalence Principle. It has been argued that this violation implies that such a superposition must inevitably spontaneously collapse (like in the Diósi–Penrose model). We identify the origin of such an assertion in the impossibility of finding a local and classical reference frame in which Einstein's Equivalence Principle would hold. In contrast, we argue that the formulation of the Equivalence Principle can be generalized so that it holds for reference frames that are associated with quantum systems in a superposition of spacetimes. The core of this new formulation is the introduction of a quantum diffeomorphism to such Quantum Reference Frames. This procedure reconciles the principle of linear superposition in Quantum Theory with the principle of general covariance and the Equivalence Principle of General Relativity. Hence, it is not necessary to invoke a gravity-induced spontaneous state reduction when a massive body is prepared in a spatial superposition.

2.
3.
R.
Penrose
,
Gen. Relativ. Gravitation
28
,
581
(
1996
).
4.
S.
Carlip
,
Classical Quantum Gravity
25
,
154010
(
2008
).
5.
A.
Bassi
,
A.
Großardt
, and
H.
Ulbricht
,
Classical Quantum Gravity
34
,
193002
(
2017
).
7.
D. M.
Greenberger
,
J. Math. Phys.
11
,
2329
(
1970
).
8.
D. M.
Greenberger
,
J. Math. Phys.
11
,
2341
(
1970
).
9.
Y.
Aharonov
and
G.
Carmi
,
Found. Phys.
3
,
493
(
1973
).
10.
C.
Lämmerzahl
,
Gen. Relativ. Gravitation
28
,
1043
(
1996
).
11.
L.
Viola
and
R.
Onofrio
,
Phys. Rev. D
55
,
455
(
1997
).
12.
G.
Rosi
,
G.
D'Amico
,
L.
Cacciapuoti
,
F.
Sorrentino
,
M.
Prevedelli
,
M.
Zych
,
Č.
Brukner
, and
G.
Tino
,
Nat. Commun.
8
,
15529
(
2017
).
13.
M.
Zych
and
Č.
Brukner
,
Nat. Phys.
14
,
1027
(
2018
).
14.
C.
Anastopoulos
and
B.-L.
Hu
,
Classical Quantum Gravity
35
,
035011
(
2018
).
15.
L.
Seveso
,
V.
Peri
, and
M. G. A.
Paris
,
J. Phys.
880
,
012067
(
2017
).
16.
L.
Hardy
, “
Implementation of the quantum equivalence principle
,” in
Progress and Visions in Quantum Theory in View of Gravity
(
Springer
,
New York
,
2020
), pp.
189
220
.
17.
F.
Pipa
,
N.
Paunković
, and
M.
Vojinović
,
J. Cosmol. Astropart. Phys.
2019
,
57
.
18.
F.
Giacomini
and
Č.
Brukner
, arXiv:2012.13754 (
2020
).
19.
Y.
Aharonov
and
L.
Susskind
,
Phys. Rev.
155
,
1428
(
1967
).
20.
B. S.
DeWitt
,
Phys. Rev.
160
,
1113
(
1967
).
21.
Y.
Aharonov
and
L.
Susskind
,
Phys. Rev.
158
,
1237
(
1967
).
22.
Y.
Aharonov
and
T.
Kaufherr
,
Phys. Rev. D
30
,
368
(
1984
).
23.
S. D.
Bartlett
,
T.
Rudolph
, and
R. W.
Spekkens
,
Rev. Mod. Phys.
79
,
555
(
2007
).
24.
G.
Gour
and
R. W.
Spekkens
,
New J. Phys.
10
,
033023
(
2008
).
25.
A.
Kitaev
,
D.
Mayers
, and
J.
Preskill
,
Phys. Rev. A
69
,
052326
(
2004
).
26.
M. C.
Palmer
,
F.
Girelli
, and
S. D.
Bartlett
,
Phys. Rev. A
89
,
052121
(
2014
).
27.
S. D.
Bartlett
,
T.
Rudolph
,
R. W.
Spekkens
, and
P. S.
Turner
,
New J. Phys.
8
,
58
(
2006
).
28.
A. R. H.
Smith
,
M.
Piani
, and
R. B.
Mann
,
Phys. Rev. A
94
,
012333
(
2016
).
29.
D.
Poulin
and
J.
Yard
,
New J. Phys.
9
,
156
(
2007
).
30.
M.
Skotiniotis
,
B.
Toloui
,
I. T.
Durham
, and
B. C.
Sanders
,
Phys. Rev. Lett.
111
,
020504
(
2013
).
31.
D.
Poulin
,
Int. J. Theor. Phys.
45
,
1189
(
2006
).
32.
F.
Girelli
and
D.
Poulin
,
Phys. Rev. D
77
,
104012
(
2008
).
33.
T.
Miyadera
,
L.
Loveridge
, and
P.
Busch
,
J. Phys. A
49
,
185301
(
2016
).
34.
L.
Loveridge
,
P.
Busch
, and
T.
Miyadera
,
Europhys. Lett.
117
,
40004
(
2017
).
35.
L.
Loveridge
,
T.
Miyadera
, and
P.
Busch
,
Found. Phys.
48
,
135
(
2018
).
36.
J.
Pienaar
, arXiv:1601.07320 (
2016
).
37.
R. M.
Angelo
,
N.
Brunner
,
S.
Popescu
,
A. J.
Short
, and
P.
Skrzypczyk
,
J. Phys. A
44
,
145304
(
2011
).
38.
R. M.
Angelo
and
A. D.
Ribeiro
,
J. Phys. A
45
,
465306
(
2012
).
39.
S. T.
Pereira
and
R. M.
Angelo
,
Phys. Rev. A
91
,
022107
(
2015
).
40.
C.
Rovelli
,
Classical Quantum Gravity
8
,
317
(
1991
).
41.
F.
Giacomini
,
E.
Castro-Ruiz
, and
Č.
Brukner
,
Nat. Commun.
10
,
494
(
2019
).
42.
A.
Vanrietvelde
,
P. A.
Höhn
,
F.
Giacomini
, and
E.
Castro-Ruiz
,
Quantum
4
,
225
(
2020
).
43.
A.
Vanrietvelde
,
P. A.
Höhn
, and
F.
Giacomini
, arXiv:1809.05093 (
2018
).
44.
F.
Giacomini
,
E.
Castro-Ruiz
, and
Č.
Brukner
,
Phys. Rev. Lett.
123
,
090404
(
2019
).
46.
A.-C.
de la Hamette
and
T. D.
Galley
,
Quantum
4
,
367
(
2020
).
47.
L. F.
Streiter
,
F.
Giacomini
, and
Č.
Brukner
,
Phys. Rev. Lett.
126
,
230403
(
2021
).
48.
M.
Krumm
,
P. A.
Höhn
, and
M. P.
Müller
, arXiv:2011.01951 (
2020
).
49.
A.
Ballesteros
,
F.
Giacomini
, and
G.
Gubitosi
,
Quantum
5
,
470
(
2021
).
51.
R.
Howl
,
R.
Penrose
, and
I.
Fuentes
,
New J. Phys.
21
,
043047
(
2019
).
52.
E.
Castro-Ruiz
,
F.
Giacomini
,
A.
Belenchia
, and
Č.
Brukner
,
Nat. Commun.
11
,
2627
(
2020
).
53.
L. C.
Barbado
,
E.
Castro-Ruiz
,
L.
Apadula
, and
Č.
Brukner
,
Phys. Rev. D
102
,
045002
(
2020
).
54.
J.
Foo
,
S.
Onoe
, and
M.
Zych
,
Phys. Rev. D
102
,
085013
(
2020
).
You do not currently have access to this content.