One consequence of the cosmic censorship conjecture is that any topological structure will ultimately collapse to within the horizons of a set of black holes, and as a result, an external classical observer will be unable to probe it. However, a single two-level quantum system [Unruh–DeWitt (UDW) detector] that remains outside of the horizon has been shown to distinguish between a black hole and its associated geon counterpart via its different response rates. Here, we extend this investigation of the quantum vacuum outside of an P2 geon by considering the entanglement structure of the vacuum state of a quantum scalar field in this spacetime, and how this differs from its Banados–Teitelboim–Zanelli (BTZ) black hole counterpart. Employing the entanglement harvesting protocol, where field entanglement is swapped to a pair of UDW detectors, we find that the classically hidden topology of the geon can have an appreciable difference in the amount of entanglement harvested in the two spacetimes for sufficiently small mass. In this regime, we find that detectors with a small energy gap harvest more entanglement in the BTZ spacetime; however, as the energy gap increases, the detectors harvest more entanglement in a geon spacetime. The energy gap at the crossover is dependent on the black hole mass, occurring at lower values for lower masses. This also impacts the size of the entanglement shadow, the region near the horizon where the detectors cannot harvest entanglement. Small gap detectors experience a larger entanglement shadow in a geon spacetime, whereas for large gap detectors, the shadow is larger in a BTZ spacetime.

1.
C.
Welch
,
Frustro Typeface Applies the Penrose Impossible Triangle Concept to Words
(
The Verge
,
Washington, D.C.
,
2012
).
2.
M.
Kumar
,
Cycles of Time: An Extraordinary New View of the Universe by Roger Penrose: Review
(
The Guardian
,
London, U.K.
,
2010
).
3.
Totally History
,
Ascending and Descending by M. C. Escher–Facts about the Painting
(
Totally History
,
2013
).
4.
R.
Penrose
,
Phys. Rev. Lett.
14
,
57
(
1965
).
5.
R.
Penrose
,
Nuovo Cimento Riv. Ser.
1
,
252
(
1969
).
6.
R.
Penrose
,
J. Astrophys. Astron.
20
,
233
248
(
1999
).
7.
J.
Wheeler
and
K.
Ford
,
Geons, Black Holes and Quantum Foam: A Life in Physics
(
W.W. Norton & Co
.,
New York
,
2000
).
8.
D.
Gannon
,
J. Math. Phys.
16
,
2364
(
1975
).
9.
J.
Friedmann
,
Conceptual Problems of Quantum Gravity
(
Osgood Hill Conference
,
Cambridge
,
1988
).
10.
J. L.
Friedman
,
K.
Schleich
, and
D. M.
Witt
,
Phys. Rev. Lett.
71
,
1486
(
1993
);
[PubMed]
J. L.
Friedman
,
K.
Schleich
, and
D. M.
Witt
, Erratum,
Phys. Rev. Lett.
75
,
1872
(
1995
).
11.
J.
Louko
and
D.
Marolf
,
Phys. Rev. D
58
,
024007
(
1998
).
12.
J.
Louko
,
R. B.
Mann
, and
D.
Marolf
,
Classical Quantum Gravity
22
,
1451
(
2005
).
13.
M.
Bañados
,
C.
Teitelboim
, and
J.
Zanelli
,
Phys. Rev. Lett.
69
,
1849
(
1992
).
14.
M.
Bañados
,
M.
Henneaux
,
C.
Teitelboim
, and
J.
Zanelli
,
Phys. Rev. D
48
,
1506
(
1993
).
15.
S.
Carlip
,
Quantum Gravity in 2 + 1 Dimensions
(
Cambridge U. P
.,
Cambridge
,
2003
).
16.
J.
Louko
and
D.
Marolf
,
Phys. Rev. D
59
,
066002
(
1999
).
17.
J.
Louko
,
D.
Marolf
, and
S. F.
Ross
,
Phys. Rev. D
62
,
044041
(
2000
).
18.
J. M.
Maldacena
,
J. High Energy Phys.
2003
,
021
.
19.
M.
Sinamuli
and
R. B.
Mann
,
Phys. Rev. D
96
,
026014
(
2017
).
20.
M.
Sinamuli
and
R. B.
Mann
,
Phys. Rev. D
98
,
026005
(
2018
).
21.
M.
Miyaji
,
T.
Numasawa
,
N.
Shiba
,
T.
Takayanagi
, and
K.
Watanabe
,
Phys. Rev. Lett.
115
,
261602
(
2015
).
22.
A. R. H.
Smith
and
R. B.
Mann
,
Classical Quantum Gravity
31
,
082001
(
2014
).
23.
K. K.
Ng
,
R. B.
Mann
, and
E.
Martín-Martínez
,
Phys. Rev. D
96
,
085004
(
2017
).
24.
W. G.
Unruh
,
Phys. Rev. D
14
,
870
(
1976
).
25.
B. S.
DeWitt
, “
Quantum gravity: The new synthesis
,” in
General Relativity: An Einstein Centenary Surve
(
Cambridge U. P
.,
Cambridge
,
1979
), pp.
680
745
.
26.
L. J.
Henderson
,
R. A.
Hennigar
,
R. B.
Mann
,
A. R. H.
Smith
, and
J.
Zhang
,
Classical Quantum Gravity
35
,
21LT02
(
2018
).
27.
L.
Henderson
,
R.
Hennigar
,
R.
Mann
,
A.
Smith
, and
J.-L.
Zhang
,
Phys. Lett. B
809
,
135732
(
2020
).
28.
M. P. G.
Robbins
,
L. J.
Henderson
, and
R. B.
Mann
, arXiv:2010.14517 (
2020
).
29.
A.
Peres
and
D. R.
Terno
,
Rev. Mod. Phys.
76
,
93
(
2004
).
30.
L.
Lamata
,
M. A.
Martin-Delgado
, and
E.
Solano
,
Phys. Rev. Lett.
97
,
250502
(
2006
).
31.
T. C.
Ralph
,
G. J.
Milburn
, and
T.
Downes
,
Phys. Rev. A
79
,
022121
(
2009
).
32.
S.
Ryu
and
T.
Takayanagi
,
Phys. Rev. Lett.
96
,
181602
(
2006
).
33.
M.
Hotta
,
J. Phys. Soc. Jpn.
78
,
034001
(
2009
).
34.
M.
Hotta
, arXiv:1101.3954 (
2011
).
35.
S. N.
Solodukhin
,
Living Rev. Relativ.
14
,
8
(
2011
).
36.
R.
Brustein
,
M. B.
Einhorn
, and
A.
Yarom
,
J. High Energy Phys.
2006
,
098
.
37.
J.
Preskill
,
International Symposium on Black Holes, Membranes, Wormholes and Superstrings Woodlands
, Texas, January 16-18, 1992 (
1992
), pp.
22
39
.
38.
S. D.
Mathur
,
Classical Quantum Gravity
26
,
224001
(
2009
).
39.
A.
Almheiri
,
D.
Marolf
,
J.
Polchinski
, and
J.
Sully
,
J. High Energy Phys.
2013
,
062
.
40.
S. L.
Braunstein
,
S.
Pirandola
, and
K.
Zyczkowski
,
Phys. Rev. Lett.
110
,
101301
(
2013
).
41.
R. B.
Mann
,
Black Holes: Thermodynamics, Information, and Firewalls
, SpringerBriefs in Physics (
Springer
,
New York
,
2015
).
42.
S. J.
Summers
and
R.
Werner
,
Phys. Lett. A
110
,
257
(
1985
).
43.
S. J.
Summers
and
R.
Werner
,
J. Math. Phys.
28
,
2448
(
1987
).
44.
45.
46.
B.
Reznik
,
A.
Retzker
, and
J.
Silman
,
Phys. Rev. A
71
,
042104
(
2005
).
47.
G.
Salton
,
R. B.
Mann
, and
N. C.
Menicucci
,
New J. Phys.
17
,
035001
(
2015
).
48.
E.
Martín-Martínez
,
A. R. H.
Smith
, and
D. R.
Terno
,
Phys. Rev. D
93
,
044001
(
2016
).
49.
G. V.
Steeg
and
N. C.
Menicucci
,
Phys. Rev. D
79
,
044027
(
2009
).
50.
Z.
Huang
and
Z.
Tian
,
Nucl. Phys. B
923
,
458
(
2017
).
51.
K. K.
Ng
,
R. B.
Mann
, and
E.
Martín-Martínez
,
Phys. Rev. D
98
,
125005
(
2018
), arXiv:1809.06878 [quant-ph].
52.
L. J.
Henderson
,
R. A.
Hennigar
,
R. B.
Mann
,
A. R. H.
Smith
, and
J.
Zhang
,
J. High Energy Phys.
2019
,
178
.
53.
M.
Bañados
,
M.
Henneaux
,
C.
Teitelboim
, and
J.
Zanelli
,
Phys. Rev. D
48
,
1506
(
1993
).
54.
L. J.
Henderson
,
R. A.
Hennigar
,
R. B.
Mann
,
A. R.
Smith
, and
J.
Zhang
, arXiv:1911.02977 (
2019
).
55.
E.
Tjoa
and
R. B.
Mann
, arXiv:2007.02955 (
2020
).
56.
A. R.
Smith
, “
Detectors, reference frames, and time
,” Ph.D. thesis (
University of Waterloo
, Waterloo,
2017
).
57.
W. K.
Wootters
,
Phys. Rev. Lett.
80
,
2245
(
1998
).
58.
E.
Martín-Martínez
,
M.
Montero
, and
M.
del Rey
,
Phys. Rev. D
87
,
064038
(
2013
).
59.
A. M.
Alhambra
,
A.
Kempf
, and
E.
Martín-Martínez
,
Phys. Rev. A
89
,
033835
(
2014
).
60.
A.
Pozas-Kerstjens
and
E.
Martín-Martínez
,
Phys. Rev. D
94
,
064074
(
2016
).
61.
G.
Lifschytz
and
M.
Ortiz
,
Phys. Rev. D
49
,
1929
(
1994
).
62.
L. J.
Henderson
, “
What can detectors detect?
,” Ph.D. thesis (
University of Waterloo
, Waterloo,
2021
).
You do not currently have access to this content.