This work studies the variational quantum eigensolver (VQE) algorithm, which is designed to determine the ground state of a quantum mechanical system by combining classical and quantum hardware. Two methods of reducing the number of required qubit manipulations, prone to induce errors, for the variational quantum eigensolver are studied. First, we formally justify the multiple 2 symmetry qubit reduction scheme first sketched by Bravyi et al. [arXiv:1701.08213 (2017)]. Second, we show that even in small, but non-trivial systems such as H2, LiH, and H2O, the choice of entangling methods (gate based or native) gives rise to varying rates of convergence to the ground state of the system. Through both the removal of qubits and the choice of entangler, the demands on the quantum hardware can be reduced. We find that in general, analyzing the VQE problem is complex, where the number of qubits, the method of entangling, and the depth of the search space all interact. In specific cases however, concrete results can be shown, and an entangling method can be recommended over others as it outperforms in terms of difference from the ground state energy.

2.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
 et al,
Nature
574
,
505
(
2019
).
3.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O'Brien
,
Nat. Commun.
5
,
4213
(
2014
).
4.
A.
Kandala
,
A.
Mezzacapo
,
K.
Temme
,
M.
Takita
,
M.
Brink
,
J. M.
Chow
, and
J. M.
Gambetta
,
Nature
549
,
242
(
2017
).
5.
C.
Hempel
 et al,
Phys. Rev. X
8
,
031022
(
2018
).
6.
A.
Aspuru-Guzik
and
P.
Walther
,
Nat. Phys.
8
,
285
(
2012
).
7.
T.
O'Brien
,
P.
Rożek
, and
A.
Akhmerov
,
Phys. Rev. Lett.
120
,
220504
(
2018
).
8.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
 et al,
Science
369
,
1084
(
2020
).
9.
M.
Cerezo
 et al, arXiv:2012.09265 (
2020
).
10.
K.
Bharti
 et al, arXiv:2101.08448 (
2021
).
11.
K.
Kuroiwa
and
Y. O.
Nakagawa
,
Phys. Rev. Res.
3
,
013197
(
2021
).
12.
IBM-Research-Editorial-Staff
, “
How to measure a molecule's energy using a quantum computer
,” IBM Research Blog, September 13, 2017, https://www.ibm.com/blogs/research/2017/09/quantum-molecule/.
13.
S.
Bravyi
,
J. M.
Gambetta
,
A.
Mezzacapo
, and
K.
Temme
, arXiv:1701.08213 (
2017
).
14.
D. A.
Fedorov
,
B.
Peng
,
N.
Govind
, and
Yu.
Alexeev
, arXiv:2103.08505 (
2021
).
15.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S.
Benjamin
, and
X.
Yuan
, arXiv:1808.10402 (
2018
).
16.
Hartree units are also known as atomic units where the reduced constant of Plank , the electron mass me, the elementary charge e, and Coulomb's constant ke=1/4πϵ0 are equal to unity. In this system the Bohr radius a0=4πϵ02/mee2 is also equal to unity. Hartree units are often used in molecular level calculations (Ref. 17).
17.
J. R.
McClean
,
J.
Romero
,
R.
Babbush
, and
A.
Aspuru-Guzik
,
New J. Phys.
18
,
023023
(
2016
).
18.
D.
McQuarrie
,
Quantum Chemistry
(
University Science Books
,
2008
), Vol.
1
, Chap. 10, pp.
266
290
.
19.
In this work the integrals in Eqs. (3) and (4) have been determined using quantum computation libraries OpenFermion (Ref. 24) and Psi4 (Ref. 20) in the STO-3G basis.
20.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O'Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer III
,
A. Yu.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince III
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
,
J. Chem. Phys.
152
,
184108
(
2020
).
21.
P.
Coleman
, “
Simple examples of second quantization
,” in
Introduction to Many-Body Physics
(
Cambridge U. P
., Cambridge,
2015
), pp.
71
94
.
22.
G.-L.
Anselmetti
,
D.
Wierichs
,
C.
Gogolin
, and
R. M.
Parrish
,
New J. Phys.
(published online) (
2021
).
23.
K.
Setia
,
R.
Chen
,
J. E.
Rice
,
A.
Mezzacapo
,
M.
Pistoia
, and
J.
Whitfield
, arXiv:1910.14644 (
2020
).
24.
25.
M.
Ganzhorn
 et al,
Phys. Rev. Appl.
11
,
044092
(
2019
).
26.
J. R.
McClean
 et al, arXiv:1710.07629 (
2017
).
27.
T. A.
Brun
, arXiv:1910.03672 (
2019
).
28.
K.
Fujii
,
Quantum Computation with Topological Codes
, 1st ed. (
Springer
,
Singapore
,
2015
), Vol.
8
.
29.
D.
Gottesman
, “
Stabilizer codes and quantum error correction
,” Ph.D. thesis (
California Institute of Technology
,
1997
).
30.
A. G.
Kurosh
,
Theory of Groups
(
American Mathematical Society
,
Providence
,
2014
).
31.
Another widely used method for VQE that can create entanglement is the universal coupled cluster method (UCC). Here, a different ansatz and parameters are used and the state is evolved via eT(θ)T(θ)|ψ0, where T=Σi,jθijaiaj+Σi,j,k,lθi,jk,laiajakal is the cluster operator, the parametrized sum of all possible one and two excitation operators. Since in this method the entanglement operations are parametrized and we do not consider that type of control, we choose not to include this in our research (Ref. 14).
33.
C. S.
Adams
,
J. D.
Pritchard
, and
J. P.
Shaffer
,
J. Phys. B
53
,
012002
(
2020
).
34.
D.
Jaksch
,
J. I.
Cirac
,
P.
Zoller
,
S. L.
Rolston
,
R.
Côté
, and
M. D.
Lukin
,
Phys. Rev. Lett.
85
,
2208
(
2000
).
35.
M.
Morgado
and
S.
Whitlock
,
AVS Quantum Sci.
3
,
023501
(
2021
).
36.
T. G.
Walker
and
M.
Saffman
, in
Advances in Atomic, Molecular, and Optical Physics
, edited by
P.
Berman
,
E.
Arimondo
, and
C.
Lin
(
Academic
,
London
,
2012
), Vol.
61
, pp.
81
115
.
37.
K.
Groenland
and
K.
Schoutens
,
Phys. Rev. A.
97
,
042321
(
2018
).
38.
S. R.
Clark
,
C. M.
Alves
, and
D.
Jaksch
,
New J. Phys.
7
,
124
(
2005
).
39.
J. R.
McClean
,
S.
Boixo
,
V. N.
Smelyanskiy
,
R.
Babbush
, and
H.
Neven
,
Nat. Commun.
9
,
4812
(
2018
).
40.
J. C.
Spall
,
IEEE Trans. Aerosp. Electron. Syst.
34
,
817
(
1998
).
41.
P. J.
Nicholas
, in
Proceedings of INFORMS Computer Society Conference
(
2015
).
42.
M.
Piao Tan
and
C. A.
Floudas
, “
Determining the optimal number of clusters determining the optimal number of clusters
,” in
Encyclopedia of Optimization
, edited by
C. A.
Floudas
and
P. M.
Pardalos
(
Springer US
,
Boston
,
2009
), pp.
687
694
.
43.
N.
Ketkar
, “
Stochastic gradient descent
,” in
Deep Learning with Python
(Apress, 2017), pp.
113
132
.
44.
M.
Schuld
,
V.
Bergholm
,
C.
Gogolin
,
J.
Izaac
, and
N.
Killoran
,
Phys. Rev. A
99
,
032331
(
2019
).
45.
A.
Uvarov
,
J. D.
Biamonte
, and
D.
Yudin
,
Phys. Rev. B
102
,
075104
(
2020
).
You do not currently have access to this content.