We calculate the resonance fluorescence signal of a two-level system coupled to a quantized phonon mode. By treating the phonons in the independent boson model and not performing any approximations in their description, we also have access to the state evolution of the phonons. We confirm the validity of our model by simulating the limit of an initial quasi-classical coherent phonon state, which can be compared to experimentally confirmed results in the semiclassical limit. In addition, we predict the photon scattering spectra in the limit of purely quantum mechanical phonon states by approaching the phononic vacuum. Our method further allows us to simulate the impact of the light scattering process on the phonon state by calculating Wigner functions. We show that the phonon mode is brought into characteristic quantum states by the optical excitation process.

1.
G.
Kurizki
,
P.
Bertet
,
Y.
Kubo
,
K.
Mølmer
,
D.
Petrosyan
,
P.
Rabl
, and
J.
Schmiedmayer
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
3866
(
2015
).
2.
F.
Arute
 et al,
Nature
574
,
505
(
2019
).
3.
P.
Senellart
,
G.
Solomon
, and
A.
White
,
Nat. Nanotechnol.
12
,
1026
(
2017
).
4.
Z.-H.
Xiang
,
J.
Huwer
,
J.
Skiba-Szymanska
,
R. M.
Stevenson
,
D. J. P.
Ellis
,
I.
Farrer
,
M. B.
Ward
,
D. A.
Ritchie
, and
A. J.
Shields
,
Commun. Phys.
3
,
121
(
2020
).
5.
K.
Stannigel
,
P.
Rabl
,
A. S.
Sørensen
,
P.
Zoller
, and
M. D.
Lukin
,
Phys. Rev. Lett.
105
,
220501
(
2010
).
6.
M.-A.
Lemonde
,
S.
Meesala
,
A.
Sipahigil
,
M. J. A.
Schuetz
,
M. D.
Lukin
,
M.
Loncar
, and
P.
Rabl
,
Phys. Rev. Lett.
120
,
213603
(
2018
).
7.
M.
Metcalfe
,
S. M.
Carr
,
A.
Muller
,
G. S.
Solomon
, and
J.
Lawall
,
Phys. Rev. Lett.
105
,
037401
(
2010
).
8.
M.
Weiß
,
D.
Wigger
,
M.
Nägele
,
K.
Müller
,
J. J.
Finley
,
T.
Kuhn
,
P.
Machnikowski
, and
H. J.
Krenner
,
Optica
8
,
291
(
2021
).
9.
D.
Wigger
,
M.
Weiß
,
M.
Lienhart
,
K.
Müller
,
J. J.
Finley
,
T.
Kuhn
,
H. J.
Krenner
, and
P.
Machnikowski
,
Phys. Rev. Res.
3
,
033197
(
2021
).
10.
L.
Shao
 et al,
Phys. Rev. Appl.
12
,
014022
(
2019
).
11.
J. V.
Cady
,
O.
Michel
,
K. W.
Lee
,
R. N.
Patel
,
C. J.
Sarabalis
,
A. H.
Safavi-Naeini
, and
A. C.
Bleszynski Jayich
,
Quantum Sci. Technol.
4
,
024009
(
2019
).
12.
E. D. S.
Nysten
,
A.
Rastelli
, and
H. J.
Krenner
,
Appl. Phys. Lett.
117
,
121106
(
2020
).
13.
A.
Vogele
,
M. M.
Sonner
,
B.
Mayer
,
X.
Yuan
,
M.
Weiß
,
E. D.
Nysten
,
S. F.
Covre da Silva
,
A.
Rastelli
, and
H. J.
Krenner
,
Adv. Quantum Technol.
3
,
1900102
(
2020
).
14.
K. J.
Satzinger
 et al,
Nature
563
,
661
(
2018
).
15.
T.
Stauber
,
R.
Zimmermann
, and
H.
Castella
,
Phys. Rev. B
62
,
7336
(
2000
).
16.
A.
Gali
,
T.
Simon
, and
J.
Lowther
,
New J. Phys.
13
,
025016
(
2011
).
17.
F. J. R.
Schülein
,
E.
Zallo
,
P.
Atkinson
,
O. G.
Schmidt
,
R.
Trotta
,
A.
Rastelli
,
A.
Wixforth
, and
H. J.
Krenner
,
Nat. Nanotechnol.
10
,
512
(
2015
).
18.
M.
Munsch
,
A. V.
Kuhlmann
,
D.
Cadeddu
,
J.-M.
Gérard
,
J.
Claudon
,
M.
Poggio
, and
R. J.
Warburton
,
Nat. Commun.
8
,
76
(
2017
).
19.
A. N.
Cleland
,
Foundations of Nanomechanics: From Solid-State Theory to Device Applications
(
Springer Science & Business Media
,
New York
,
2013
).
20.
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
,
Rev. Mod. Phys.
86
,
1391
(
2014
).
21.
W. P.
Bowen
and
G. J.
Milburn
,
Quantum Optomechanics
(
CRC
,
Boca Raton
,
2015
).
22.
J.
Kettler
 et al,
Nat. Nanotechnol.
16
,
283
(
2021
).
23.
G. D.
Mahan
,
Many-Particle Physics
(
Springer Science & Business Media
,
New York
,
2013
).
24.
B.
Krummheuer
,
V. M.
Axt
, and
T.
Kuhn
,
Phys. Rev. B
65
,
195313
(
2002
).
25.
H.
Castella
and
R.
Zimmermann
,
Phys. Rev. B
59
,
R7801
(
1999
).
26.
I.
Wilson-Rae
and
A.
Imamoğlu
,
Phys. Rev. B
65
,
235311
(
2002
).
27.
I.
Wilson-Rae
,
P.
Zoller
, and
A.
Imamoğlu
,
Phys. Rev. Lett.
92
,
075507
(
2004
).
28.
U.
Hohenester
,
A.
Laucht
,
M.
Kaniber
,
N.
Hauke
,
A.
Neumann
,
A.
Mohtashami
,
M.
Seliger
,
M.
Bichler
, and
J. J.
Finley
,
Phys. Rev. B
80
,
201311
(
2009
).
29.
A.
Carmele
,
M.
Richter
,
W. W.
Chow
, and
A.
Knorr
,
Phys. Rev. Lett.
104
,
156801
(
2010
).
30.
J.
Kabuss
,
A.
Carmele
,
M.
Richter
, and
A.
Knorr
,
Phys. Rev. B
84
,
125324
(
2011
).
31.
J.
Kabuss
,
A.
Carmele
,
T.
Brandes
, and
A.
Knorr
,
Phys. Rev. Lett.
109
,
054301
(
2012
).
32.
J.-J.
Li
and
K.-D.
Zhu
,
J. Appl. Phys.
110
,
114308
(
2011
).
33.
M.
Abdi
,
M.-J.
Hwang
,
M.
Aghtar
,
M. B.
Plenio
,
M.
Abdi
,
M.-J.
Hwang
,
M.
Aghtar
, and
M. B.
Plenio
,
Phys. Rev. Lett.
119
,
233602
(
2017
).
34.
L. A.
Kanari-Naish
,
J.
Clarke
,
M. R.
Vanner
, and
E. A.
Laird
,
AVS Quantum Sci.
3
,
045603
(
2021
).
35.
J.
Gilmore
and
R. H.
McKenzie
,
J. Phys.
17
,
1735
(
2005
).
36.
V. M.
Axt
,
M.
Herbst
, and
T.
Kuhn
,
Superlattices Microstruct.
26
,
117
(
1999
).
37.
T.
Hahn
,
D.
Groll
,
T.
Kuhn
, and
D.
Wigger
,
Phys. Rev. B
100
,
024306
(
2019
).
38.
A.
Vagov
,
V. M.
Axt
, and
T.
Kuhn
,
Phys. Rev. B
66
,
165312
(
2002
).
39.
D.
Wigger
,
H.
Gehring
,
V. M.
Axt
,
D. E.
Reiter
, and
T.
Kuhn
,
J. Comput. Electron.
15
,
1158
(
2016
).
40.
D.
Groll
,
T.
Hahn
,
P.
Machnikowski
,
D.
Wigger
, and
T.
Kuhn
,
Mater. Quantum Technol.
1
,
015004
(
2021
).
41.
P.
Meystre
and
M.
Sargent
,
Elements of Quantum Optics
(
Springer
,
New York
,
2007
).
42.
D. E.
Reiter
,
D.
Wigger
,
V. M.
Axt
, and
T.
Kuhn
,
Phys. Rev. B
84
,
195327
(
2011
).
43.
R. J.
Glauber
,
Phys. Rev.
131
,
2766
(
1963
).
44.
S. J.
Whiteley
 et al,
Nat. Phys.
15
,
490
(
2019
).
45.
A.
Kenfack
and
K.
Życzkowski
,
J. Opt. B
6
,
396
(
2004
).
46.
P. D.
Drummond
and
Z.
Ficek
,
Quantum Squeezing
(
Springer Science & Business Media
,
New York
,
2013
), Vol.
27
.
47.
D.
Groll
,
D.
Wigger
,
K.
Jürgens
,
T.
Hahn
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
J.
Kasprzak
, and
T.
Kuhn
,
Phys. Rev. B
101
,
245301
(
2020
).
You do not currently have access to this content.