Optical quantum interferometry represents the oldest example of quantum metrology, and it is at the source of quantum technologies. The original squeezed state scheme is now a significant element of the last version of gravitational wave detectors, and various additional uses have been proposed. Further quantum-enhanced schemes, from the SU(1,1) interferometer to twin beam correlation interferometry, have also reached the stage of proof of principle experiments, thus enlarging the field of experimental quantum interferometry and paving the way to several additional applications, from Planck scale signals search to small effect detection. In this review, I will describe these experimental achievements, and I will focus on their schemes, advantages, applications, and possible further developments.

1.
Quantum Information, Computation and Cryptography
, edited by
F.
Benatti
(
Springer
,
New York
,
2010
).
2.
P.
Moreau
 et al,
Nat. Rev. Phys.
1
,
367
(
2019
).
3.
G.
Brida
,
M.
Genovese
, and
I. R.
Berchera
,
Nat. Photonics
4
,
227
(
2010
).
4.
J. P.
Dowling
,
Contemp. Phys.
49
,
125
(
2008
).
5.
K.
Modi
 et al,
Phys. Rev. X
1
,
021022
(
2011
).
7.
S.
Pirandola
 et al,
Nat. Photonics
12
,
724
(
2018
).
9.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Science
306
,
1330
(
2004
);
[PubMed]
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Nat. Photonics
5
,
222
(
2011
).
10.
S.
Olivares
,
Riv. Nuovo Cimento
6
,
341
(
2018
).
11.
C. L.
Degen
 et al,
Rev. Mod. Phys.
89
,
035002
(
2017
).
12.
G.
Petrini
 et al,
Adv. Quantum Technol.
3
,
2000066
(
2020
).
13.
C. M.
Caves
,
Phys. Rev. D
23
,
1693
(
1981
).
14.
A.
Boto
 et al,
Phys. Rev. Lett.
85
,
2733
(
2000
).
15.
S. F.
Huelga
 et al,
Phys. Rev. Lett.
79
,
3865
(
1997
).
16.
K.
McKenzie
 et al,
Phys. Rev. Lett.
88
,
231102
(
2002
).
17.
M.
Manceau
 et al,
Phys. Rev. Lett.
119
,
223604
(
2017
).
18.
G.
Toth
and
I.
Apellanitz
,
J. Phys. A
47
,
424006
(
2014
).
19.
M.
Paris
,
Int. J. Quantum. Inf.
07
,
125
(
2009
).
20.
M.
Malitesta
 et al, arXiv:2109.09178.
21.
L.
Pezze
and
A.
Smerzi
, e-print arXiv:1411.5164; “
Atom interferometry
,” in
Proceedings of the International School of Physics “Enrico Fermi,” Course 188, Varenna
, edited by
G. M.
Tino
and
M. A.
Kasevich
(
IOS
,
Amsterdam
,
2014
), p.
691
.
22.
A.
Berni
 et al,
Nat. Photonics
9
,
577
(
2015
).
24.
S.
Tan
,
B.
Erkmen
,
V.
Giovannetti
,
S.
Guha
,
S.
Lloyd
,
L.
Maccone
,
S.
Pirandola
, and
J.
Shapiro
,
Phys. Rev. Lett.
101
,
253601
(
2008
).
25.
E.
Lopaeva
 et al,
Phys. Rev. Lett.
110
,
153603
(
2013
).
26.
G.
Ortolano
 et al,
Sci. Adv.
7
,
eabc7796
(
2021
);
[PubMed]
E.
Losero
 et al, arXiv:2102.09428.
27.
M.
D'Angelo
 et al,
Phys. Rev. Lett.
87
,
13602
(
2001
).
28.
G.
Bjork
et al.,
Phys. Rev. Lett.
86
,
4516
(
2001
).
29.
D. A.
Kalashnikov
 et al,
Nat. Photonics
10
,
98
(
2016
).
30.
G.
Brida
,
M.
Genovese
,
A.
Meda
, and
I. R.
Berchera
,
Phys. Rev. A
83
,
033811
(
2011
).
31.
N.
Samantaray
 et al,
Light Sci. Appl.
6
,
e17005
(
2017
).
32.
J.
Sabines-Chesterking
 et al,
Phys. Rev. Appl.
8
,
014016
(
2017
).
33.
34.
J.
Aasi
 et al,
Nat. Photonics
7
,
613
(
2013
).
35.
F.
Acernese
 et al,
Phys. Rev. Lett.
123
,
231108
(
2019
).
36.
37.
J.
Abadie
 et al,
Nat. Phys.
7
,
962
(
2011
).
38.
H.
Grote
,
K.
Danzmann
,
K. L.
Dooley
,
R.
Schnabel
,
J.
Slutsky
, and
H.
Vahlbruch
,
Phys. Rev. Lett.
110
,
181101
(
2013
).
39.
M. V.
Chekhova
and
Z. Y.
Ou
,
Adv. Opt. Photonics
8
,
104
(
2016
).
40.
S. L.
Danilishin
 et al,
Living Rev. Relativ.
22
,
4835
(
2019
).
41.
A.
Buikema
 et al,
Phys. Rev. D
102
,
062003
(
2020
).
42.
F.
Dell'Anno
 et al,
Phys. Rep.
428
,
53
(
2006
).
44.
C.
Fabre
and
N.
Treps
,
Rev. Mod. Phys.
92
,
35005
(
2020
).
46.
B.
Yurke
,
S. L.
McCall
, and
J. R.
Klauder
,
Phys. Rev. A
33
,
4033
(
1986
).
47.
B. C.
Sanders
and
G. J.
Milburn
,
Phys. Rev. Lett.
75
,
2944
(
1995
).
48.
A.
Luis
and
J.
Perina
,
Phys. Rev. A
54
,
4564
(
1996
).
49.
L.-Z.
Liu
 et al,
Nat. Photon.
15
,
137
(
2021
).
50.
G. S.
Summy
and
D. T.
Pegg
,
Opt. Commun.
77
,
75
(
1990
).
51.
D. W.
Berry
,
H. M.
Wiseman
, and
J. K.
Breslin
,
Phys. Rev. A
63
,
053804
(
2001
);
D. W.
Berry
,
B. L.
Higgins
,
S. D.
Bartlett
,
M. W.
Mitchell
,
G. J.
Pryde
, and
H. M.
Wiseman
,
Phys. Rev. A
80
,
052114
(
2009
).
52.
M. J. W.
Hall
,
J. Mod. Opt.
40
,
809
(
1993
).
54.
L.
Maccone
and
A.
Riccardi
,
Quantum
4
,
292
(
2020
).
55.
R.
Demkowicz-Dobrzanski
,
K.
Banaszek
, and
R.
Schnabel
,
Phys. Rev. A
88
,
041802(R)
(
2013
).
56.
J.
Söderholm
 et al,
Phys. Rev. A
67
,
053803
(
2003
).
57.
B. G.
Englert
 et al,
Int. J. Quantum Inf.
6
,
129
(
2008
).
58.
P. M.
Anisimov
,
G. M.
Raterman
,
A.
Chiruvelli
,
W. N.
Plick
,
S. D.
Huver
,
H.
Lee
, and
J. P.
Dowling
,
Phys. Rev. Lett.
104
,
103602
(
2010
).
59.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Phys. Rev. Lett.
108
,
260405
(
2012
).
60.
H. F.
Hofmann
,
Phys. Rev. A
79
,
033822
(
2009
).
61.
V.
Giovannetti
and
L.
Maccone
,
Phys. Rev. Lett.
108
,
210404
(
2012
).
62.
R.
Demkowicz-Dobrzanski
,
M.
Jarzyna
, and
J.
Kolodynski
,
Prog. Opt.
60
,
345
(
2015
).
63.
T.
Kaple
 et al,
Proc. SPIE
6603
,
660316
(
2005
).
64.
B. J.
Lawrie
 et al,
ACS Photonics
6
,
1307
(
2019
).
65.
M. S.
Kim
 et al,
Phys. Rev. A
65
,
032323
(
2002
).
66.
M.
Xiao
,
L.-A.
Wu
, and
H. J.
Kimble
,
Phys. Rev. Lett.
59
,
278
(
1987
).
67.
P.
Grangier
,
R. E.
Slusher
,
B.
Yurke
, and
A.
LaPorta
,
Phys. Rev. Lett.
59
,
2153
(
1987
).
68.
Incidentally losses are usually significantly affecting all quantum technologies protocols (with the significant exception of quantum illumination
Refs. 23–25).
69.
J.
Gea-Banacloche
and
G.
Leuchs
,
J. Opt. Soc. Am. B
4
,
1667
(
1987
).
70.
X.
Zhang
 et al,
Phys. Rev. A
88
,
013838
(
2013
).
71.
M.
Manceau
,
F.
Khalili
, and
M.
Chekhova
,
New J. Phys.
19
,
013014
(
2017
).
72.
G.
Frascella
 et al,
npj Quantum Inf.
7
,
72
(
2021
).
73.
J.
Südbeck
 et al,
Nat. Photonics
14
,
240
(
2020
).
74.
Y.
Ma
 et al,
Nat. Phys.
13
,
776
(
2017
).
75.
V. B.
Braginsky
and
F. Y.
Khalili
,
Phys. Lett. A
147
,
251
(
1990
).
76.
77.
S. L.
Danilishin
,
Phys. Rev. D
69
,
102003
(
2004
).
78.
M.
Wang
 et al,
Phys. Rev. D
87
,
096008
(
2013
).
79.
T.
Zhang
, et al,
New J. Phys.
20
,
103040
(
2018
).
80.
V. B.
Braginsky
 et al,
Phys. Rev. D
61
,
044002
(
2000
).
81.
82.
P.
Purdue
and
Y.
Chen
,
Phys. Rev. D
66
,
122004
(
2002
).
83.
A. R.
Wade
 et al,
Phys. Rev. D
86
,
062001
(
2012
).
84.
S. H.
Huttner
 et al,
Classical Quantum Gravity
34
,
024001
(
2017
).
85.
E.
Knyazev
 et al,
Phys. Lett. A
382
,
2219
(
2018
).
86.
B.
Julsgaard
,
A.
Kozhekin
, and
E. S.
Polzik
,
Nature
413
,
400
(
2001
).
87.
C. B.
Moller
 et al,
Nature
547
,
191
(
2017
).
88.
A.
Wicht
 et al,
Opt. Commun.
134
,
431
(
1997
).
89.
L.
Pezzé
and
A.
Smerzi
,
Phys. Rev. Lett.
100
,
073601
(
2008
).
90.
N.
Spagnolo
 et al,
Phys. Rev. Lett.
108
,
233602
(
2012
).
91.
M.
Hillery
and
L.
Mlodinow
,
Phys. Rev. A
48
,
1548
(
1993
).
92.
C.
Brif
and
A.
Mann
,
Phys. Rev. A
54
,
4505
(
1996
).
93.
V.
Perinova
,
A.
Luks
, and
J.
Krepelka
,
J. Opt. B
2
,
81
(
2000
).
94.
F. A.
Raffa
,
M.
Rasetti
, and
M.
Genovese
,
J. Phys. A
52
,
475301
(
2019
).
95.
D.
Gatto
,
P.
Facchi
, and
V.
Tamma
,
Int. J. Quantum Inf.
18
,
1941019
(
2020
).
96.
E.
Zeuthen
 et al,
Phys. Rev. D
100
,
062004
(
2019
).
97.
J.-Y.
Wu
 et al,
Phys. Rev. A
100
,
013814
(
2019
).
98.
S.
Olivares
 et al,
Quantum Meas. Quantum Metrol.
3
,
38
(
2016
).
99.
Z. Y.
Ou
and
X.
Li
,
APL Photonics
5
,
080902
(
2020
).
100.
J.
Liu
 et al,
New J. Phys.
22
,
013031
(
2020
).
101.
W. N.
Plick
 et al,
New J. Phys.
12
,
083014
(
2010
).
102.
Z. Y.
Ou
 et al,
Phys. Rev. A
85
,
023815
(
2012
).
103.
J.
Jing
,
C.
Liu
,
Z.
Zhou
,
Z. Y.
Ou
, and
W.
Zhang
,
Appl. Phys. Lett.
99
,
011110
(
2011
).
104.
F.
Hudelist
,
J.
Kong
,
C.
Liu
,
J.
Jing
,
Z. Y.
Ou
, and
W.
Zhang
,
Nat. Commun.
5
,
3049
(
2014
).
105.
J. M.
Lukens
,
N. A.
Peters
, and
R. C.
Pooser
,
Opt. Lett.
41
,
5438
(
2016
).
106.
B. E.
Anderson
,
P.
Gupta
,
B. L.
Schmittberger
,
T.
Horrom
,
C.
Hermann-Avigliano
,
K. M.
Jones
, and
P. D.
Lett
,
Optica
4
,
752
(
2017
).
107.
108.
P. R.
Sharapova
,
O. V.
Tikhonova
,
S.
Lemieux
,
R. W.
Boyd
, and
M. V.
Chekhova
,
Phys. Rev. A
97
,
053827
(
2018
).
109.
X.
Guo
,
N.
Liu
,
X.
Li
,
Y.
Liu
, and
Z. Y.
Ou
,
Sci. Rep.
6
,
30214
(
2016
).
110.
J. M.
Lukens
,
R. C.
Pooser
, and
N. A.
Peters
,
Appl. Phys. Lett.
113
,
091103
(
2018
).
111.
Y.
Liu
,
J.
Li
,
L.
Cui
,
N.
Huo
,
S. M.
Assad
,
X.
Li
, and
Z. Y.
Ou
,
Opt. Express
26
,
27705
(
2018
).
112.
J.
Li
,
Y.
Liu
,
L.
Cui
,
N.
Huo
,
S. M.
Assad
,
X.
Li
, and
Z. Y.
Ou
,
Phys. Rev. A
97
,
052127
(
2018
).
113.
J.
Li
,
Y.
Liu
,
N.
Huo
,
L.
Cui
,
C.
Feng
,
Z. Y.
Ou
, and
X.
Li
,
Opt. Express
27
,
30552
(
2019
).
114.
S.
Lemieux
,
M.
Manceau
,
P. R.
Sharapova
,
O. V.
Tikhonova
,
R. W.
Boyd
,
G.
Leuchs
, and
M. V.
Chekhova
,
Phys. Rev. Lett.
117
,
183601
(
2016
).
115.
G.
Frascella
,
R. V.
Zakharov
,
O. V.
Tikhonova
, and
M. V.
Chekhova
,
Laser Phys.
29
,
124013
(
2019
).
116.
G.
Frascella
,
E. E.
Mikhailov
,
N.
Takanashi
,
R. V.
Zakharov
,
O. V.
Tikhonova
, and
M. V.
Chekhova
,
Optica
6
,
1233
(
2019
).
117.
118.
Y.
Liu
,
N.
Huo
,
J.
Li
,
L.
Cui
,
X.
Li
, and
Z. Y.
Ou
,
Opt. Express
27
,
11292
(
2019
).
119.
S. S.
Szigeti
 et al,
Phys. Rev. Lett.
118
,
150401
(
2017
).
120.
S.
Liu
 et al,
Phys. Rev. Appl.
10
,
064046
(
2018
).
121.
W.
Du
 et al, e-print arXiv:2004.14266 (
2020
).
122.
Z. Y.
Ou
,
S. F.
Pereira
, and
H. J.
Kimble
,
Appl. Phys. B
55
,
265
(
1992
).
123.
D.
Li
 et al,
New J. Phys.
16
,
073020
(
2014
).
124.
P.
Gupta
,
B. L.
Schmittberger
,
B. E.
Anderson
,
K. M.
Jones
, and
P. D.
Lett
,
Opt. Express
26
,
391
(
2018
).
125.
K.
Zheng
 et al,
Photonics Res.
8
,
1653
(
2020
).
126.
A.
Ferreri
 et al, e-print arXiv:2012.03751 (
2021
).
127.
C. M.
Caves
,
Adv. Quantum Technol.
3
,
1900138
(
2020
).
128.
J.
Liu
 et al,
Opt. Express
28
,
39443
(
2020
).
129.
G.
Shukla
 et al,
Opt. Express
29
,
95
(
2021
).
130.
S.
Chang
 et al, e-print arXiv:2103.07844 (
2021
).
131.
S.
Wang
and
J.
Zhang
, e-print arXiv:2104.09718 (
2021
).
132.
S.
Wang
,
J.
Zhang
, and
X.
Xu
, e-print arXiv:2105.03820 (
2021
).
133.
G.
Amelino-Camelia
 et al,
Nature
393
,
763
(
1998
).
134.
G.
Amelino-Camelia
,
Nature
398
,
216
(
1999
).
135.
G.
Amelino-Camelia
,
Nature
478
,
466
(
2011
).
136.
137.
I.
Pikovski
 et al,
Nat. Photonics
8
,
393
(
2012
).
138.
J. D.
Bekenstein
, e-print arXiv:1211.3816 (
2012
).
139.
P.
Aschieri
and
L.
Castellani
,
J. Geom. Phys.
60
,
375
(
2010
).
140.
P.
Aschieri
and
L.
Castellani
,
J. High Energy Phys.
2009
,
086
.
141.
A. S.
Chou
 et al,
Phys. Rev. D
95
,
063002
(
2017
).
142.
L.
Aiello
 et al, arXiv:2108.04746.
143.
A.
Bisio
 et al,
Ann. Phys.
368
,
177
(
2016
).
144.
C.
Hogan
and
O.
Kwon
, e-print arXiv:1506.06808 (
2017
).
145.
A.
Bisio
 et al,
Phys. Rev. Lett.
113
,
200401
(
2014
).
146.
A.
Laucht
 et al,
Nanotechnology
32
,
162003
(
2021
).
147.
G.
Brida
,
M.
Genovese
,
E.
Monticone
,
C.
Portesi
,
M.
Rajteri
, and
I. R.
Berchera
, “
Experimental sub-shot noise quantum imaging versus differential classical imaging
,” in
Fourth International Conference on Quantum, Nano and Micro Technologies
(
2010
), pp.
71
76
.
148.
R.
Schnabel
,
N.
Mavalvala
,
D. E.
McClelland
, and
P. K.
Lam
,
Nat. Commun.
1
,
121
(
2010
).
149.
J. D.
Romano
and
N. J.
Cornish
,
Living Rev. Relativ.
20
,
2
(
2017
).
150.
T.
Akutsu
 et al,
Phys. Rev. Lett.
101
,
101101
(
2008
).
151.
A.
Nishizawa
 et al,
Classical Quantum Gravity
25
,
225011
(
2008
).
152.
A.
Shoda
 et al,
Phys. Rev. D
89
,
027101
(
2014
).
153.
B. J.
Carr
and
S. W.
Hawking
,
Mon. Not. R. Astron. Soc.
168
,
399
(
1974
).
154.
A. S.
Chou
 et al,
Classical Quantum Gravity
34
,
165005
(
2017
).
155.
I.
Ruo Berchera
,
I. P.
Degiovanni
,
S.
Olivares
, and
M.
Genovese
,
Phys. Rev. Lett.
110
,
213601
(
2013
).
156.
I.
Ruo-Berchera
,
I. P.
Degiovanni
,
S.
Olivares
,
N.
Samantaray
,
P.
Traina
, and
M.
Genovese
,
Phys. Rev. A
92
,
053821
(
2015
).
157.
A.
Meda
,
E.
Losero
,
N.
Samantaray
,
F.
Scafirimuto
,
S.
Pradyumna
,
A.
Avella
,
I.
Ruo-Berchera
, and
M.
Genovese
,
J. Opt.
19
,
094002
(
2017
).
158.
I. P.
Degiovanni
and
I. R.
Berchera
,
Metrologia
56
,
024001
(
2019
).
159.
S. T.
Pradyumna
 et al,
Commun. Phys.
3
,
104
(
2020
).
160.
S. M.
Vermeulen
 et al, e-print arXiv:2008.04957 (
2021
).
161.
N.
Samantaray
 et al,
Phys. Rev. A
101
,
063810
(
2020
).
162.
F.
Benatti
 et al,
Int. J. Quantum Inf.
15
,
1740014
(
2017
).
163.
C.
Vitelli
 et al,
Phys. Rev. Lett.
105
,
113602
(
2010
).
164.
X.
Zuo
 et al,
Phys. Rev. Lett.
124
,
173602
(
2020
).
165.
G.-F.
Jiao
 et al,
Phys. Rev. A
102
,
033520
(
2020
).
166.
167.
H.
Uys
and
P.
Meystre
,
Phys. Rev. A
76
,
013804
(
2007
).
168.
S. F.
Huelga
 et al,
Appl. Phys. B
67
,
723
(
1998
).
169.
Y.
Shih
,
Free-Space Laser Communication and Laser Imaging II
(
SPIE
,
2002
), Vol. 4821.
170.
M. W.
Mitchell
,
J. S.
Lundeen
, and
A. M.
Steinberg
,
Nature
429
,
161
(
2004
).
171.
X.
Gao
, arXiv:2107.02740.
172.
H. S.
Eisenberg
 et al,
Phys. Rev. Lett.
94
,
090502
(
2005
).
173.
E.
Su
 et al,
Phys. Rev. Lett.
119
,
080502
(
2017
).
174.
N.
Thomas-Peter
 et al,
Phys. Rev. Lett.
107
,
113603
(
2011
).
175.
176.
P.
Walther
 et al,
Nature
429
,
158
(
2004
).
177.
178.
P. A.
Knott
 et al,
Phys. Rev. A
90
,
033846
(
2014
).
179.
C. F.
Wildfeuer
 et al,
Phys. Rev. A
80
,
043822
(
2009
).
180.
R.
Okamoto
 et al,
New J. Phys.
10
,
073033
(
2008
).
181.
M. J.
Holland
and
K.
Burnett
,
Phys. Rev. Lett.
71
,
1355
(
1993
).
182.
P.
Zapletal
 et al, e-print arXiv:2012.08544 (
2020
).
183.
G. S.
Thekkadath
 et al,
npj Quantum Inf.
6
,
89
(
2020
).
184.
J. J.
Bollinger
 et al,
Phys. Lett. A
54
,
R4649
(
1996
).
185.
H.
Cable
and
G.
Durkin
,
Phys. Rev. Lett.
105
,
039901
(
2010
).
186.
J.
Matthews
 et al,
npj Quantum Inf.
2
,
16023
(
2016
).
187.
C.
You
 et al, arXiv:2011.02454 (
2020
).
188.
S.
Boixo
 et al,
Phys. Rev. Lett.
98
,
090401
(
2007
).
189.
S.
Choi
and
B.
Sundaram
,
Phys. Rev. A
77
,
053613
(
2008
).
190.
S.
Roy
and
S.
Braunstein
,
Phys. Rev. Lett.
100
,
220501
(
2008
).
191.
M.
Napolitano
 et al,
Nature
447
,
486
(
2011
).
192.
B. L.
Higgins
 et al,
Nature
450
,
393
(
2007
).
193.
R. J.
Birrittella
 et al, arXiv:2008.08658 (
2020
).
194.
A.
Anisimov
 et al,
Phys. Rev. Lett.
104
,
121102
(
2010
).
196.
J.
Beltran
and
A.
Luis
,
Phys. Rev. A
72
,
045801
(
2005
).
197.
S.
Boixo
 et al,
Phys. Rev. Lett.
101
,
040403
(
2008
).
198.
D.
Braun
 et al,
Rev. Mod. Phys.
90
,
035006
(
2018
).
199.
F.
Benatti
and
D.
Braun
,
Phys. Rev. A
87
,
012340
(
2013
).
200.
J.
Joo
 et al,
Phys. Rev. A
86
,
043828
(
2012
).
201.
C.
Wei
and
Z.
Zhang
,
J. Mod. Opt.
64
,
743
(
2017
).
202.
Y.
Aharonov
 et al,
Phys. Rev. Lett.
60
,
1351
(
1988
).
203.
F.
Piacentini
 et al,
Nat. Phys.
13
,
1191
(
2017
).
204.
O.
Hosten
and
P.
Kwiat
,
Science
319
,
787
(
2008
).
206.
P.
Dixon
 et al,
Phys. Rev. Lett.
102
,
173601
(
2009
).
207.
H.
Hogan
 et al,
Opt. Lett.
36
,
1698
(
2011
).
208.
O.
Magana-Loaiza
 et al,
Phys. Rev. Lett.
112
,
200401
(
2014
).
209.
F.
Piacentini
 et al,
Phys. Rev. Lett.
116
,
180401
(
2016
).
210.
F.
Piacentini
 et al,
Phys. Rev. Lett.
117
,
170402
(
2016
).
211.
212.
V.
Gebhart
 et al, e-print arXiv:1905.01147 (
2020
).
213.
J.
Dressel
 et al,
Rev. Mod. Phys.
86
,
307
(
2014
).
214.
D. J.
Starling
 et al,
Phys. Rev. A
82
,
018002
(
2010
).
215.
S.
Xie
 et al,
Appl. Phys. Express
13
,
012001
(
2020
).
216.
L.
Li
 et al,
Phys. Rev. A
97
,
033851
(
2018
).
217.
C.
Fang
 et al,
Appl. Phys. Lett.
115
,
031101
(
2019
).
218.
C.
Marletto
and
V.
Vedral
, e-print arXiv:2002.02777 (
2021
).
219.
R. J.
Adler
 et al,
Phys. Lett. B
477
,
424
(
2000
).
220.
Y.
Jack Ng
and
H.
van Dam
,
Found. Phys.
30
,
795
(
2000
).
You do not currently have access to this content.