In this review, the improvements made in the past two decades for 40Ca+ optical clocks in China are presented. Uncertainty of below 1.3×1017 was achieved by applying the “magic” RF trapping frequency and introducing a generalized Ramsey excitation scheme. The stability of 40Ca+ optical clocks has been improved to 2.5×1015/τ with an uptime rate of 93.8% by implementing two ameliorated lock algorithms in the Ramsey excitation scheme. A long-term clock frequency comparison shows a clock stability of 6.3 × 10−18 in an averaging time of 524 000 s. A robust and transportable clock installed in an air-conditioned car trailer can achieve almost the same performance of laboratory clocks. A height difference between transportable and laboratory clocks was measured with an uncertainty of 0.33 m and the absolute frequency of 40Ca+ optical clock transitions was remeasured as 411 042 129 776 400.41(23) Hz, with a fractional uncertainty of 5.6×1016 based on a Cs fountain clock in the National Institute of Metrology after the transportable clock was transported from Wuhan to Beijing. The author predicts that transportable single-ion optical clocks especially based on the 40Ca+ will make a significant contribution to the construction of a world-wide optical clock network and the redefinition of the unit of time in the future.

1.
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
,
T.
Yahagi
,
K.
Kokado
,
H.
Shinkai
, and
H.
Katori
,
Nat. Photonics
14
,
411
(
2020
).
2.
T.
Rosenband
 et al,
Science
319
,
1808
(
2008
).
3.
Y.
Huang
 et al,
Phys. Rev. A
102
,
050802
(
2020
).
4.
M. S.
Safronova
,
D.
Budker
,
D.
DeMille
,
D. F. J.
Kimball
,
A.
Derevianko
, and
C. W.
Clark
,
Rev. Mod. Phys.
90
,
025008
(
2018
).
5.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
,
Rev. Mod. Phys.
87
,
637
(
2015
).
6.
W.
Xia
and
X.
Chen
,
Meas. Sci. Technol.
27
,
041001
(
2016
).
7.
K.
Beloy
 et al,
Nature
591
,
564
(
2021
).
8.
E.
Oelker
 et al,
Nat. Photonics
13
,
714
(
2019
).
9.
S.
Weyers
,
V.
Gerginov
,
M.
Kazda
,
J.
Rahm
,
B.
Lipphardt
,
G.
Dobrev
, and
K.
Gibble
,
Metrologia
55
,
789
(
2018
).
10.
R.
Li
,
K.
Gibble
, and
K.
Szymaniec
,
Metrologia
48
,
283
(
2011
).
11.
S. M.
Brewer
,
J. S.
Chen
,
A. M.
Hankin
,
E. R.
Clements
,
C. W.
Chou
,
D. J.
Wineland
,
D. B.
Hume
, and
D. R.
Leibrandt
,
Phys. Rev. Lett.
123
,
033201
(
2019
).
12.
T.
Bothwell
,
D.
Kedar
,
E.
Oelker
,
J. M.
Robinson
,
S. L.
Bromley
,
W. L.
Tew
,
J.
Ye
, and
C. J.
Kennedy
,
Metrologia
56
,
065004
(
2019
).
13.
W. F.
McGrew
 et al,
Nature
564
,
87
(
2018
).
14.
E.
Peik
,
T.
Schneider
, and
C.
Tamm
,
J. Phys. B
39
,
145
(
2006
).
15.
F.-L.
Hong
,
Meas. Sci. Technol.
28
,
012002
(
2017
).
16.
N.
Nemitz
,
T.
Ohkubo
,
M.
Takamoto
,
I.
Ushijima
,
M.
Das
,
N.
Ohmae
, and
H.
Katori
,
Nat. Photonics
10
,
258
(
2016
).
17.
R.
Hobson
,
W.
Bowden
,
A.
Vianello
,
A.
Silva
,
C. F. A.
Baynham
,
H. S.
Margolis
,
P. E. G.
Baird
,
P.
Gill
, and
I. R.
Hill
,
Metrologia
57
,
065026
(
2020
).
18.
Y.
Lin
 et al,
Metrologia
58
,
035010
(
2021
).
19.
S.
Dörscher
,
N.
Huntemann
,
R.
Schwarz
,
R.
Lange
,
E.
Benkler
,
B.
Lipphardt
,
U.
Sterr
,
E.
Peik
, and
C.
Lisdat
,
Metrologia
58
,
015005
(
2021
).
20.
P.
Dubé
,
A. A.
Madej
,
Z.
Zhou
, and
J. E.
Bernard
,
Phys. Rev. A
87
,
023806
(
2013
).
21.
C.
Sanner
,
N.
Huntemann
,
R.
Lange
,
C.
Tamm
,
E.
Peik
,
M. S.
Safronova
, and
S. G.
Porsev
,
Nature
567
,
204
(
2019
).
22.
K.
Gao
,
Natl. Sci. Rev.
7
,
1799
(
2020
).
23.
J.
Cao
,
P.
Zhang
,
J.
Shang
,
K.
Cui
,
J.
Yuan
,
S.
Chao
,
S.
Wang
,
H.
Shu
, and
X.
Huang
,
Appl. Phys. B
123
,
112
(
2017
).
24.
S. B.
Koller
,
J.
Grotti
,
S.
Vogt
,
A.
Al-Masoudi
,
S.
Dörscher
,
S.
Häfner
,
U.
Sterr
, and
C.
Lisdat
,
Phys. Rev. Lett.
118
,
073601
(
2017
).
25.
S.
Origlia
 et al,
Phys. Rev. A
98
,
053443
(
2018
).
26.
A.
Kreuter
 et al,
Phys. Rev. Lett.
92
,
203002
(
2004
).
27.
M.
Chwalla
 et al,
Phys. Rev. Lett.
102
,
023002
(
2009
).
28.
K.
Matsubara
 et al,
Opt. Express
20
,
22034
(
2012
).
29.
Y.
Huang
,
H.
Guan
,
P.
Liu
,
W.
Bian
,
L.
Ma
,
K.
Liang
,
T.
Li
, and
K.
Gao
,
Phys. Rev. Lett.
116
,
013001
(
2016
).
30.
B.
Zhang
,
Y.
Huang
,
Y.
Hao
,
H.
Zhang
,
M.
Zeng
,
H.
Guan
, and
K.
Gao
,
J. Appl. Phys.
128
,
143105
(
2020
).
31.
H.
Shao
,
Y.
Huang
,
H.
Guan
,
C.
Li
,
T.
Shi
, and
K.
Gao
,
Phys. Rev. A
95
,
053415
(
2017
).
32.
H.
Shao
,
M.
Wang
,
M.
Zeng
,
H.
Guan
, and
K.
Gao
,
J. Phys. Commun.
2
,
095019
(
2018
).
33.
P.
Dubé
,
A. A.
Madej
,
J. E.
Bernard
,
L.
Marmet
,
J. S.
Boulanger
, and
S.
Cundy
,
Phys. Rev. Lett.
95
,
033001
(
2005
).
34.
Y.
Huang
,
H.
Guan
,
M.
Zeng
,
L.
Tang
, and
K.
Gao
,
Phys. Rev. A
99
,
011401
(
2019
).
35.
B.
Arora
,
M. S.
Safronova
, and
C. W.
Clark
,
Phys. Rev. A
76
,
064501
(
2007
).
36.
B.
Zhang
,
Y.
Huang
,
H.
Zhang
,
Y.
Hao
,
M.
Zeng
,
H.
Guan
, and
K.
Gao
,
Chin. Phys. B
29
,
074209
(
2020
).
37.
Y.
Huang
,
H.
Guan
,
W.
Bian
,
L.
Ma
,
K.
Liang
,
T.
Li
, and
K.
Gao
,
Appl. Phys. B
123
,
166
(
2017
).
38.
P.
Dubé
,
A. A.
Madej
,
M.
Tibbo
, and
J. E.
Bernard
,
Phys. Rev. Lett.
112
,
173002
(
2014
).
39.
D. J.
Berkeland
,
J. D.
Miller
,
J. C.
Bergquist
,
W. M.
Itano
, and
D. J.
Wineland
,
J. Appl. Phys.
83
,
5025
(
1998
).
40.
A. A.
Madej
,
J. E.
Bernard
,
P.
Dubé
,
L.
Marmet
, and
R. S.
Windeler
,
Phys. Rev. A
70
,
012507
(
2004
).
41.
Y.
Huang
,
Q.
Liu
,
J.
Cao
,
B.
Ou
,
P.
Liu
,
H.
Guan
,
X.
Huang
, and
K.
Gao
,
Phys. Rev. A
84
,
053841
(
2011
).
42.
T. L.
Nicholson
,
M. J.
Martin
,
J. R.
Williams
,
B. J.
Bloom
,
M.
Bishof
,
M. D.
Swallows
,
S. L.
Campbell
, and
J.
Ye
,
Phys. Rev. Lett.
109
,
230801
(
2012
).
43.
G. P.
Barwood
,
G.
Huang
,
S. A.
King
,
H. A.
Klein
, and
P.
Gill
,
J. Phys. B
48
,
035401
(
2015
).
44.
P.
Dubé
,
A. A.
Madej
,
A.
Shiner
, and
B.
Jian
,
Phys. Rev. A
92
,
042119
(
2015
).
You do not currently have access to this content.