Previous studies of photon-assisted tunneling through normal-metal–insulator–superconductor junctions have exhibited potential for providing a convenient tool to control the dissipation of quantum-electric circuits in situ. However, the current literature on such a quantum-circuit refrigerator (QCR) does not present a detailed description for the charge dynamics of the tunneling processes or the phase coherence of the open quantum system. Here, we derive a master equation describing both quantum-electric and charge degrees of freedom, and discover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge and quantum dynamics. Consequently, the minor effect of the different charge states can be taken into account by averaging over the charge distribution. We also consider applying an ac voltage to the tunnel junction, which enables control of the decay rate of a superconducting qubit over four orders of magnitude by changing the drive amplitude; we find an order-of-magnitude drop in the qubit excitation in 40 ns and a residual reset infidelity below 104. Furthermore, for the normal island, we consider the case of charging energy and single-particle level spacing large compared to the superconducting gap, i.e., a quantum dot. Although the decay rates arising from such a dot QCR appear low for use in qubit reset, the device can provide effective negative damping (gain) to the coupled microwave resonator. The Fano factor of such a millikelvin microwave source may be smaller than unity, with the latter value being reached close to the maximum attainable power.

1.
K. Y.
Tan
,
M.
Partanen
,
R. E.
Lake
,
J.
Govenius
,
S.
Masuda
, and
M.
Mottonen
,
Nat. Commun.
8
,
15189
(
2017
).
2.
M.
Silveri
,
H.
Grabert
,
S.
Masuda
,
K. Y.
Tan
, and
M.
Möttönen
,
Phys. Rev. B
96
,
094524
(
2017
).
3.
M.
Partanen
 et al,
Phys. Rev. B
100
,
134505
(
2019
).
4.
M.
Silveri
 et al,
Nat. Phys.
15
,
533
(
2019
).
5.
M.
Partanen
 et al,
Sci. Rep.
8
,
6325
(
2018
).
6.
V. A.
Sevriuk
 et al,
Appl. Phys. Lett.
115
,
082601
(
2019
).
7.
H.
Hsu
,
M.
Silveri
,
A.
Gunyhó
,
J.
Goetz
,
G.
Catelani
, and
M.
Möttönen
,
Phys. Rev. B
101
,
235422
(
2020
).
8.
A.
Metelmann
and
A. A.
Clerk
,
Phys. Rev. Lett.
112
,
133904
(
2014
).
9.
M.
Naghiloo
,
M.
Abbasi
,
Y. N.
Joglekar
, and
K. W.
Murch
,
Nat. Phys.
15
,
1232
(
2019
).
10.
E.
Doucet
,
F.
Reiter
,
L.
Ranzani
, and
A.
Kamal
,
Phys. Rev. Res.
2
,
023370
(
2020
).
11.
C.
Kow
,
Z.
Xiao
,
A.
Metelmann
, and
A.
Kamal
,
Phys. Rev. Res.
3
,
023093
(
2021
).
12.
S.
Mostame
,
P.
Rebentrost
,
A.
Eisfeld
,
A. J.
Kerman
,
D. I.
Tsomokos
, and
A.
Aspuru-Guzik
,
New J. Phys.
14
,
105013
(
2012
).
13.
P. J.
Jones
,
J. A. M.
Huhtamäki
,
J.
Salmilehto
,
K. Y.
Tan
, and
M.
Möttönen
,
Sci. Rep.
3
,
1987
(
2013
).
14.
J.
Tuorila
,
M.
Partanen
,
T.
Ala-Nissila
, and
M.
Möttönen
,
npj Quantum Inf.
3
,
27
(
2017
).
15.
E.
Hyyppä
 et al,
Appl. Phys. Lett.
114
,
192603
(
2019
).
16.
Y.
Mu
and
C. M.
Savage
,
Phys. Rev. A
46
,
5944
(
1992
).
17.
J. Q.
You
,
Y-x
Liu
,
C. P.
Sun
, and
F.
Nori
,
Phys. Rev. B
75
,
104516
(
2007
).
18.
O.
Astafiev
,
K.
Inomata
,
A. O.
Niskanen
,
T.
Yamamoto
,
Y. A.
Pashkin
,
Y.
Nakamura
, and
J. S.
Tsai
,
Nature
449
,
588
(
2007
).
19.
S.
Ashhab
,
J. R.
Johansson
,
A. M.
Zagoskin
, and
F.
Nori
,
New J. Phys.
11
,
023030
(
2009
).
20.
J.
Hauss
,
A.
Fedorov
,
C.
Hutter
,
A.
Shnirman
, and
G.
Schön
,
Phys. Rev. Lett.
100
,
037003
(
2008
).
21.
A. A.
Sokolova
,
G. P.
Fedorov
,
E. V.
Il'ichev
, and
O. V.
Astafiev
,
Phys. Rev. A
103
,
013718
(
2021
).
22.
D. A.
Rodrigues
,
J.
Imbers
, and
A. D.
Armour
,
Phys. Rev. Lett.
98
,
067204
(
2007
).
23.
M.
Marthaler
,
J.
Leppäkangas
, and
J. H.
Cole
,
Phys. Rev. B
83
,
180505
(
2011
).
24.
A.
Stockklauser
,
V. F.
Maisi
,
J.
Basset
,
K.
Cujia
,
C.
Reichl
,
W.
Wegscheider
,
T.
Ihn
,
A.
Wallraff
, and
K.
Ensslin
,
Phys. Rev. Lett.
115
,
046802
(
2015
).
25.
J.
Jin
,
M.
Marthaler
,
P.-Q.
Jin
,
D.
Golubev
, and
G.
Schön
,
New J. Phys.
15
,
025044
(
2013
).
26.
Y.-Y.
Liu
,
J.
Stehlik
,
C.
Eichler
,
M. J.
Gullans
,
J. M.
Taylor
, and
J. R.
Petta
,
Science
347
,
285
(
2015
).
27.
Y.-Y.
Liu
,
J.
Stehlik
,
C.
Eichler
,
X.
Mi
,
T. R.
Hartke
,
M. J.
Gullans
,
J. M.
Taylor
, and
J. R.
Petta
,
Phys. Rev. Lett.
119
,
097702
(
2017
).
28.
Y.-Y.
Liu
,
T. R.
Hartke
,
J.
Stehlik
, and
J. R.
Petta
,
Phys. Rev. A
96
,
053816
(
2017
).
29.
C.
Xu
and
M. G.
Vavilov
,
Phys. Rev. B
88
,
195307
(
2013
).
30.
L. E.
Bruhat
,
J. J.
Viennot
,
M. C.
Dartiailh
,
M. M.
Desjardins
,
T.
Kontos
, and
A.
Cottet
,
Phys. Rev. X
6
,
021014
(
2016
).
31.
S.
Masuda
,
K. Y.
Tan
,
M.
Partanen
,
R. E.
Lake
,
J.
Govenius
,
M.
Silveri
,
H.
Grabert
, and
M.
Möttönen
,
Sci. Rep.
8
,
3966
(
2018
).
32.
D. M. T.
van Zanten
,
D. M.
Basko
,
I. M.
Khaymovich
,
J. P.
Pekola
,
H.
Courtois
, and
C. B.
Winkelmann
,
Phys. Rev. Lett.
116
,
166801
(
2016
).
33.
D. M. T.
van Zanten
,
F.
Balestro
,
H.
Courtois
, and
C. B.
Winkelmann
,
Phys. Rev. B
92
,
184501
(
2015
).
34.
H.
Park
,
A. K. L.
Lim
,
A. P.
Alivisatos
,
J.
Park
, and
P. L.
McEuen
,
Appl. Phys. Lett.
75
,
301
(
1999
).
35.
Y.-J.
Doh
,
S. D.
Franceschi
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
,
Nano Lett.
8
,
4098
(
2008
).
36.
A.
Viitanen
 et al,
Phys. Rev. Res.
3
,
033126
(
2021
).
37.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University
,
New York
,
2002
).
38.
G.
Catelani
,
S. E.
Nigg
,
S. M.
Girvin
,
R. J.
Schoelkopf
, and
L. I.
Glazman
,
Phys. Rev. B
86
,
184514
(
2012
).
39.
G.
Catelani
,
Phys. Rev. B
89
,
094522
(
2014
).
40.
K.
Serniak
,
S.
Diamond
,
M.
Hays
,
V.
Fatemi
,
S.
Shankar
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
,
Phys. Rev. Appl.
12
,
014052
(
2019
).
41.
A.
Barone
and
G.
Paternò
,
Physics and Applications of the Josephson Effect
(
Wiley
,
New York
,
1982
).
42.
A. L.
Yeyati
,
J. C.
Cuevas
,
A.
Lopez-Davalos
, and
A.
Martin-Rodero
,
Phys. Rev. B
55
,
R6137(R)
(
1997
).
43.
More precisely, our γL is calculated at zero temperature and finite bias eV<δε; our definition differ from that in Ref. 42 by a factor of 2.
44.
H.
van Houten
,
C. W. J.
Beenakker
, and
A. A. M.
Staring
, “
Chapter 5: Coulomb-blockade oscillations in semiconductor nanostructures
,” in
Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures
, edited by
H.
Grabert
and
M. H.
Devoret
(
Plenum
,
New York
,
1992
).
45.
We use here the notation ζ for the quantity ρ of Ref. 2 to avoid confusion with the density matrix.
46.
Equation (71) shows that if first or higher-order derivatives acting on terms containing ρz were kept, by iterative solution third or higher-order derivatives acting on terms containing ρ would be introduced in Eq.
(
70
),
terms,
which would be beyond the used accuracy.
47.
M.
Fox
,
Quantum Optics: An Introduction
(
Oxford University
,
New York
,
2006
).
48.
The numerical coefficient relating γtr(2) to γtr(1) is approximately given by [1sin(4y+9/24y)]/(2πy3), where y2.57 is the second non-zero, positive solution to 1sin(4y+9/24y)=4ycos(4y+9/24y)/3.
49.
For even weaker coupling to the transmission line, the number of solutions to Eq. (79) is generally odd and a alternates its sign from one solution to the next, suggesting possible multi-stability regimes. A multi-peak distribution for phonon occupation has been predicted in an optomechanical system, but at low phonon number (Ref. 60), and in a spin-based quantum dot-resonator system (Ref. 61), when treated beyond the secular approximation (which we employ). We do not explore this possibility further in this work.
50.
In this limit, the value of m¯ζ=x22.72 to be used in calculating F is obtained as the second largest positive solution to 1sin(4x+9/24x)=2πx3γtr(2)/γtr(1).
51.
The numerical coefficients in these relations have been determined numerically by locating the first maximum of the matrix element M12 as function of mζ.
52.
K. C.
Tan
and
H.
Jeong
,
AVS Quantum Sci.
1
,
014701
(
2019
).
53.
The parameters used in Fig. 7(a) are close to satisfying this condition, which can be met by increasing γtr to 1.47×107 Hz.
54.
G.
Rastelli
and
M.
Governale
,
Phys. Rev. B
100
,
085435
(
2019
).
55.
P.-Q.
Jin
,
M.
Marthaler
,
J. H.
Cole
,
A.
Shnirman
, and
G.
Schön
,
Phys. Rev. B
84
,
035322
(
2011
).
56.
A.
Hosseinkhani
and
G.
Catelani
,
Phys. Rev. B
97
,
054513
(
2018
).
57.
M. R.
Nevala
,
S.
Chaudhuri
,
J.
Halkosaari
,
J. T.
Karvonen
, and
I. J.
Maasilta
,
Appl. Phys. Lett.
101
,
112601
(
2012
).
58.
S.
Chaudhuri
,
M. R.
Nevala
, and
I. J.
Maasilta
,
Appl. Phys. Lett.
102
,
132601
(
2013
).
59.
C.
Yan
,
J.
Hassel
,
V.
Vesterinen
,
J.
Zhang
,
J.
Ikonen
,
L.
Grönberg
,
J.
Goetz
, and
M.
Möttönen
, e-print arXiv:2103.07617 (
2021
).
60.
J.
Qian
,
A. A.
Clerk
,
K.
Hammerer
, and
F.
Marquardt
,
Phys. Rev. Lett.
109
,
253601
(
2012
).
61.
M.
Mantovani
,
A. D.
Armour
,
W.
Belzig
, and
G.
Rastelli
,
Phys. Rev. B
99
,
045442
(
2019
).
You do not currently have access to this content.