The vision is a software-defined quantum network that enables a flexible experimental platform for developing quantum applications for industry. While components of the quantum Internet are under development, the control plane remains undefined. The quantum Internet, like the classical Internet, will be a network of networks. Operation of an industrial quantum network is viewed as a networked control problem, and a time-sensitive network control plane is proposed to enable a quantum software-defined network. Measurement-device-independent quantum key distribution is used as an example implementation since it provides a foundation for a quantum repeater and, by extension, the quantum Internet. Results indicate that a time-sensitive network control plane design is feasible, and its pros and cons are discussed.

1.
See: “
From long-distance entanglement to building a nationwide quantum internet
,” U.S. Department of Energy, 5–6 February
2020
, https://www.energy.gov/sites/prod/files/2020/07/f76/QuantumWkshpRpt20FINAL_Nav_0.pdf.
2.
See: “
OIDA quantum photonics roadmap
” OSA Industry Development Associates, March 2020, https://www.osa.org/en-us/industry/industry_intelligence/oidaroadmap/.
3.
C.
Paquin
,
D.
Stebila
, and
G.
Tamvada
, “
Benchmarking post-quantum cryptography in TLS
,” in
Post-Quantum Cryptography. PQCrypto 2020
, Lecture Notes in Computer Science Vol.
12100
, edited by
J.
Ding
and
J. P.
Tillich
(
Springer
,
Cham
,
2020
).
4.
M.
Abdel Hafeez
,
M.
Taha
,
E. E. M.
Khaled
, and
M.
Abdel Raheem
,
2019 31st International Conference on Microelectronics (ICM)
, Cairo, Egypt (IEEE-ICM, New York,
2019
), pp.
113
117
5.
J. F.
Fitzsimons
,
npj Quantum Inf.
3
,
23
(
2017
).
6.
E.
Gardiner
,
IEEE Commun. Standards Mag.
2
,
5
(
2018
).
7.
D.
Cuomo
,
M.
Caleffi
, and
A. S.
Cacciapuoti
, “
Towards a distributed quantum computing ecosystem
,” preprint arXiv:2002.11808 [quant-ph] (
2020
).
8.
J.
Choi
,
S.
Oh
, and
J.
Kim
, “
Quantum approximation for wireless scheduling
,” preprint arXiv:2004.11229 [cs.OH] (
2020
).
10.
S.
Pirandola
,
R.
Laurenza
,
C.
Ottaviani
, and
L.
Banchi
,
Nat. Commun.
8
,
15043
(
2017
).
11.
Z.
Zhang
and
Q.
Zhuang
, “
Distributed quantum sensing
,” preprint arXiv:2010.14744 (
2020
).
12.
J.
Rubio
,
P. A.
Knott
,
T. J.
Proctor
, and
J. A.
Dunningham
,
J. Phys. A
53
,
344001
(
2020
).
13.
T. J.
Proctor
,
P. A.
Knott
, and
J. A.
Dunningham
, “
Networked quantum sensing
,” preprint arXiv:1702.04271 [quant-ph] (
2017
).
14.
P.
Kómár
,
E.
Kessler
,
M.
Bishof
,
L.
Jiang
,
A. S.
Sørensen
,
J.
Ye
, and
M. D.
Lukin
,
Nat. Phys.
10
,
582
(
2014
).
15.
S. F.
Bush
,
J. L.
Paluh
,
G.
Piro
,
V.
Rao
,
R. V.
Prasad
, and
A.
Eckford
,
IEEE Trans. Mol., Biol. Multi-Scale Commun.
1
,
90
(
2015
).
16.
P.
McGuckin
and
G.
Burt
,
2018 53rd International Universities Power Engineering Conference (UPEC)
(IEEE, New York,
2018
), pp.
1
6
.
17.
A.
Laing
,
V.
Scarani
,
J. G.
Rarity
, and
J. L.
O'Brien
,
Phys. Rev. A
82
,
012304
(
2010
).
18.
19.
See:
A.
Tauke-Pedretti
and
R.
Camacho
, “
T-Quake—Quantum-mechanical transmitter/receiver
” (
2016
), https://www.sandia.gov/research/laboratory_directed_research/secant/_assets/documents/TQuake_4b_ComparisonMatrix.pdf
20.
M.
Ziebell
,
M.
Persechino
,
N.
Harris
,
C.
Galland
,
D.
Marris-Morini
,
L.
Vivien
,
E.
Diamanti
, and
P.
Grangier
,
European Conference on Lasers Electro-Optics, Munich, Germany, 21–25 June 2015
(OSA, Washington, D.C.,
2015
), p.
JSV-4-2
.
21.
P.
Sibson
et al,
Nat. Commun.
8
,
13984
(
2017
).
22.
23.
D.
Bunandar
et al,
Phys. Rev. X
8
,
021009
(
2018
).
24.
G.
Zhang
et al,
Nat. Photonics
13
,
839
(
2019
).
25.
H.
Semenenko
,
P.
Sibson
,
A.
Hart
,
M. G.
Thompson
,
J. G.
Rarity
, and
C.
Erven
,
Optica
7
,
238
(
2020
).
26.
Y.
Ding
,
D.
Bacco
,
K.
Dalgaard
,
X.
Cai
,
X.
Zhou
,
K.
Rottwitt
, and
L. K.
Oxenløwe
,
npj Quantum Inf.
3
,
25
(
2017
).
27.
C.
Ma
,
W. D.
Sacher
,
Z.
Tang
,
J. C.
Mikkelsen
,
Y.
Yang
,
F.
Xu
,
T.
Thiessen
,
H.-K.
Lo
, and
J. K. S.
Poon
,
Optica
3
,
1274
(
2016
).
28.
W.
Geng
,
C.
Zhang
,
Y.
Zheng
,
J.
He
,
C.
Zhou
, and
Y.
Kong
,
Opt. Express
27
,
29045
(
2019
).
29.
J.
Dai
,
L.
Zhang
,
X.
fu
,
X.
Zheng
, and
L.
Yang
,
Opt. Lett.
45
,
2014
(
2020
).
30.
M.
Mehic
et al,
ACM Comput. Surv.
53
,
1
(
2020
).
31.
M.
Björklund
, “
The YANG 1.1 Data Modeling Language
,”
IETF RFC7950
(
2016
).
32.
S.
Ecker
,
B.
Liu
,
J.
Handsteiner
,
M.
Fink
,
D.
Rauch
,
F.
Steinlechner
,
T.
Scheidl
,
A.
Zeilinger
, and
R.
Ursin
,
npj Quantum Inf.
7
,
5
(
2021
).
33.
IEEE P802.1Qcc.
Standard for Local and metropolitan area networks–Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks Amendment: Stream Reservation Protocol (SRP) Enhancements and Performance Improvements. Status: PAR approved, technical development in process, task group ballots.
34.
IEEE Standard 1588-2019
,
IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems
(
IEEE
,
Piscataway, NJ
,
2019
), pp.
1
499
.
35.
IEEE 802.1AB-2016
,
IEEE Standard for Local and metropolitan area networks—Station and Media Access Control Connectivity Discovery
(
IEEE
,
Piscataway, NJ
,
2016
).
36.
S. F.
Bush
,
Proceedings Thirteenth Workshop Parallel and Distributed Simulation, PADS 99. (Cat. No.PR00155)
, Atlanta, GA, USA (ACM, New York,
1999
), pp.
182
192
.
37.
A.
Nasrallah
et al,
IEEE Commun. Surv. Tutorials
21
,
88
(
2019
).
38.
Z.
Fei
,
J.
Ruiquan
, and
G.
Rakesh
,
IETF
RFC7551
, https://datatracker.ietf.org/doc/html/rfc7551 (
2015
).
39.
A.
Farrel
,
Q.
Zhao
, and
C.
Zhou
,
IETF
RFC8283
, https://datatracker.ietf.org/doc/html/rfc8283 (
2017
).
40.
B.
Varga
,
J.
Farkas
,
A.
Malis
, and
S.
Bryant
, “
DetNet Data Plane: IP over IEEE 802.1 time sensitive networking (TSN)
,” IETF. Accessed 21 March 2021, https://datatracker.ietf.org/doc/html/draft-ietf-detnet-ip-over-tsn
41.
S.
Bjornstad
, “Can OTN be replaced by Ethernet? A network level comparison of OTN and Ethernet with a 5G perspective,”
2018 International Conference on Optical Network Design and Modeling (ONDM)
, Dublin (IEEE, New York,
2018
), pp.
220
225
.
42.
D. H.
Hailu
,
G. G.
Lema
, and
G. T.
Tesfamariam
, “
Integrated hybrid optical networking (IHON)/fusion for 5G access networks
,” preprint arXiv:1911.07614 (
2019
).
43.
S.
Giacalone
,
D.
Ward
,
J.
Drake
,
A.
Atlas
, and
S.
Previdi
,
IETF
RFC7471
, https://datatracker.ietf.org/doc/html/rfc7471 (
2015
).
44.
See:
S.
Milijevic
and
M.
Seido
, “
Timing for optical transmission network (OTN) equipment
,” Zarlink Semiconductor, http://www.telecom-sync.com/files/pdfs/itsf/2010/Day3/06-Timing_for_Optical_Transport_Network.pdf
45.
G. B.
Xavier
and
G.
Lima
,
Commun. Phys.
3
,
9
(
2020
).
46.
N.
Lauk
,
N.
Sinclair
,
S.
Barzanjeh
,
J. P.
Covey
,
M.
Saffman
,
M.
Spiropulu
, and
C.
Simon
,
Quantum Sci. Technol.
5
,
020501
(
2020
).
47.
48.
C. H.
Park
,
M. K.
Woo
,
B. K.
Park
,
M. S.
Lee
,
Y.-S.
Kim
,
Y.-W.
Cho
,
S.
Kim
,
S.-W.
Han
, and
S.
Moon
,
IEEE Access
6
,
58587
(
2018
).
49.
See: “
AIM Photonics process design kit,
” Version 4.5a,
2021
, https://www.aimphotonics.com/process-design-kit
50.
N.
Finn
,
P.
Thubert
,
B.
Varga
, and
J.
Farkas
,
IETF
RFC8655
, https://datatracker.ietf.org/doc/html/rfc8655 (
2019
).
51.
Z.
Tang
,
Z.
Liao
,
F.
Xu
,
B.
Qi
,
L.
Qian
, and
L.
H.-K
,
Phys. Rev. Lett.
112
,
190503
(
2014
).
52.
T. F.
da Silva
,
D.
Vitoreti
,
G. B.
Xavier
,
G. C.
do Amaral
,
G. P.
Temporão
, and
J. P.
von der Weid
,
Phys. Rev. A
88
,
052303
(
2013
).
53.
X.
Geng
,
M.
Chen
,
Y.
Ryoo
,
D.
Fedyk
,
R.
Rahman
, and
Z.
Li
, “
Deterministic Networking (DetNet) Configuration YANG Model
,” draftietf-detnet-yang-08 (
2020
).
54.
A.
Rubenok
,
J. A.
Slater
,
P.
Chan
,
I.
Lucio-Martinez
, and
W.
Tittel
,
Phys. Rev. Lett.
111
,
130501
(
2013
).
55.
A.
Rubenok
,
J. A.
Slater
,
P.
Chan
,
I.
Lucio-Martinez
, and
W.
Tittel
, “Supplemental Material,”
Phys. Rev. Lett.
111
,
130501
(
2013
).
56.
Y.
Zhao
,
B.
Qi
, and
H.-K.
Lo
,
Phys. Rev. A
77
,
052327
(
2008
).
57.
See:
C.
Gidney
and
contributors
, “
Quirk
2018
, https://github.com/Strilanc/Quirk
58.
G. A.
Ditzel
and
P.
Didier
, IEEE 802.1AS-2020 – IEEE Standard for Local and Metropolitan Area Networks–Timing and Synchronization for Time-Sensitive Applications (IEEE,
2015
).
59.
IEEE P802.1Qch.
Standard for Local and metropolitan area networks–Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks Amendment: Cyclic Queuing and Forwarding. Status: PAR approved, technical development in process, no drafts.
60.
C. H.
Bennett
,
G.
Brassard
,
S.
Popescu
,
B.
Schumacher
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. Lett.
76
,
722
(
1996
).
61.
M.
Mastriani
,
J. Quantum Inf. Sci.
08
,
107
(
2018
).
62.
J. D.
Case
and
C.
Partridge
,
Comput. Commun. Rev.
19
,
13
(
1989
).
63.
M.
Ben-Or
and
A.
Hassidim
,
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing
(ACM, New York,
2005
), pp.
481
485
.
64.
IEEE P802.
1AS-Revision: IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks. Status: PAR approved, technical development in process, task group ballots.
65.
IEEE Std 802.1Qbv-2015
,
IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic
(
IEEE
,
Piscataway, NJ
,
2016
), pp.
1
57
.
66.
IEEE P802.1CB.
Standard for Local and Metropolitan Area Networks-Frame Replication and Elimination for Reliability. Status: PAR approved, technical development in process, task group ballots.
67.
M.
Rizzi
,
M.
Lipinski
,
T.
Wlostowski
,
J.
Serrano
,
G.
Daniluk
,
P.
Ferrari
, and
S.
Rinaldi
,
2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)
(
IEEE
,
New York
,
2016
), pp.
1
6
.
68.
ITU-T G.8251
, “
The control of jitter and wander within the optical transport network (OTN)
,” in
ITU-T Series G: Transmission Systems and Media, Digital Systems and Networks: Packet over Transport Aspects—Synchronization, Quality and Availability Targets
(
ITU-T G
,
Geneva, Switzerland
,
2018
), pp.
1
124
.
69.
IEEE P1913 – Software-Defined Quantum Communication, https://standards.ieee.org/project/1913.html.
70.
P.
Chan
,
J. A.
Slater
,
I.
Lucio-Martinez
,
A.
Rubenok
, and
W.
Tittel
, “
Modeling a measurement-device-independent quantum key distribution system
,”
Opt. Exp.
22
,
12716
12736
(
2014
).
71.
W.-Y.
Hwang
, “
Quantum key distribution with high loss: toward global secure communication
,”
Phys. Rev. Lett.
91
,
057901
(
2003
).
72.
US Department of Energy, Time-Sensitive Quantum Key Distribution project
, https://www.netl.doe.gov/node/5737, Project Number DEOE0000894.
You do not currently have access to this content.