Motivated by the success of group IV color centers in nanodiamonds (NDs) for hybrid technology requiring a single photon source, the authors study single germanium-vacancy (GeV) centers in NDs at room temperature with size ranging from 10 to 50 nm and with remarkable spectral properties. The authors characterize their zero-phonon line, study their internal population dynamics, and compare their emission properties in the framework of a three level model with intensity dependent de-shelving. Furthermore, the authors characterize their lifetime, polarization, and brightness. The authors find a maximum photon emission count rate of 1.6 MHz at saturation. The authors also report a polarization visibility of 92% from the fluorescence light, which potentially makes GeV centers good candidates for quantum key distribution requiring polarized single photons. The authors show that GeV centers in NDs presented in this work have a comparable spectral stability compared to their bulk counterpart, which is needed for future applications using nanodiamonds.

1.
I.
Aharonovich
,
S.
Castelletto
,
D.
Simpson
,
C.
Su
,
A.
Greentree
, and
S.
Prawer
,
Rep. Prog. Phys.
74
,
076501
(
2011
).
2.
T. D.
Ladd
,
F.
Jelezko
,
R.
Laflamme
,
Y.
Nakamura
,
C.
Monroe
, and
J. L.
O'Brien
,
Nature
464
,
45
(
2010
).
3.
L.
Childress
,
R.
Walsworth
, and
M.
Lukin
,
Phys. Today
67
(
10
),
38
(
2014
).
4.
G.
Balasubramanian
 et al,
Nat. Mater.
8
,
383
(
2009
).
5.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
,
Phys. Rep.
528
,
1
(
2013
).
6.
C.
Wang
,
C.
Kurtsiefer
,
H.
Weinfurter
, and
B.
Burchard
,
J. Phys. B
39
,
37
(
2006
).
7.
S.
Meesala
 et al,
Phys. Rev. B
97
,
205444
(
2018
).
8.
E.
Neu
,
M.
Agio
, and
C.
Becher
,
Opt. Express
20
,
19956
(
2012
).
9.
A.
Sipahigil
 et al,
Science
354
,
847
(
2016
).
10.
B.
Pingault
,
D.-D.
Jarausch
,
C.
Hepp
,
L.
Klintberg
,
J. N.
Becker
,
M.
Markham
,
C.
Becher
, and
M.
Atatüre
,
Nat. Commun.
8
,
15579
(
2017
).
11.
K. D.
Jahnke
,
A.
Sipahigil
,
J. M.
Binder
,
M. W.
Doherty
,
M.
Metsch
,
L. J.
Rogers
,
N. B.
Manson
,
M. D.
Lukin
, and
F.
Jelezko
,
New J. Phys.
17
,
043011
(
2015
).
12.
D. D.
Sukachev
,
A.
Sipahigil
,
C. T.
Nguyen
,
M. K.
Bhaskar
,
R. E.
Evans
,
F.
Jelezko
, and
M. D.
Lukin
,
Phys. Rev. Lett.
119
,
223602
(
2017
).
13.
Y.-I.
Sohn
 et al,
Nat. Commun.
9
,
2012
(
2018
).
14.
L. J.
Rogers
 et al,
Nat. Commun.
5
,
4739
(
2014
).
15.
T. M.
Babinec
,
B. J.
Hausmann
,
M.
Khan
,
Y.
Zhang
,
J. R.
Maze
,
P. R.
Hemmer
, and
M.
Lončar
,
Nat. Nanotechnol.
5
,
195
(
2010
).
16.
D.
Englund
,
B.
Shields
,
K.
Rivoire
,
F.
Hatami
,
J.
Vuckovic
,
H.
Park
, and
M. D.
Lukin
,
Nano Lett.
10
,
3922
(
2010
).
17.
J.
Benedikter
 et al,
Phys. Rev. Appl.
7
,
024031
(
2017
).
18.
H.
Siampour
,
S.
Kumar
,
V. A.
Davydov
,
L. F.
Kulikova
,
V. N.
Agafonov
, and
S. I.
Bozhevolnyi
,
Light
7
,
61
(
2018
).
19.
K. G.
Fehler
,
A. P.
Ovvyan
,
L.
Antoniuk
,
N.
Lettner
,
N.
Gruhler
,
V. A.
Davydov
,
V. N.
Agafonov
,
W. H.
Pernice
, and
A.
Kubanek
,
Nanophotonics
9
,
3655
(
2020
).
20.
E.
Neu
,
D.
Steinmetz
,
J.
Riedrich-Möller
,
S.
Gsell
,
M.
Fischer
,
M.
Schreck
, and
C.
Becher
,
New J. Phys.
13
,
025012
(
2011
).
21.
E.
Neu
,
F.
Guldner
,
C.
Arend
,
Y.
Liang
,
S.
Ghodbane
,
H.
Sternschulte
,
D.
Steinmüller-Nethl
,
A.
Krueger
, and
C.
Becher
,
J. Appl. Phys.
113
,
203507
(
2013
).
22.
S.
Choi
,
V.
Leong
,
V. A.
Davydov
,
V. N.
Agafonov
,
M. W.
Cheong
,
D. A.
Kalashnikov
, and
L. A.
Krivitsky
,
Sci. Rep.
8
,
3792
(
2018
).
23.
S.
Lindner
 et al,
New J. Phys.
20
,
115002
(
2018
).
24.
M. K.
Bhaskar
 et al,
Phys. Rev. Lett.
118
,
223603
(
2017
).
25.
J.
Goss
,
P.
Briddon
,
M.
Rayson
,
S.
Sque
, and
R.
Jones
,
Phys. Rev. B
72
,
035214
(
2005
).
26.
T.
Iwasaki
 et al,
Sci. Rep.
5
,
12882
(
2015
).
27.
Y. N.
Palyanov
,
I. N.
Kupriyanov
,
Y. M.
Borzdov
, and
N. V.
Surovtsev
,
Sci. Rep.
5
,
14789
(
2015
).
28.
T.
Iwasaki
,
Y.
Miyamoto
,
T.
Taniguchi
,
P.
Siyushev
,
M. H.
Metsch
,
F.
Jelezko
, and
M.
Hatano
,
Phys. Rev. Lett.
119
,
253601
(
2017
).
29.
S. D.
Tchernij
 et al,
ACS Photonics
4
,
2580
(
2017
).
30.
S.
Ditalia Tchernij
 et al,
ACS Photonics
5
,
4864
(
2018
).
31.
M. E.
Trusheim
 et al,
Phys. Rev. B
99
,
075430
(
2019
).
32.
E.
Ekimov
,
V.
Krivobok
,
S.
Lyapin
,
P.
Sherin
,
V.
Gavva
, and
M.
Kondrin
,
Phys. Rev. B
95
,
094113
(
2017
).
33.
J.
Walker
,
Rep. Prog. Phys.
42
,
1605
(
1979
).
34.
G.
Davies
,
Rep. Prog. Phys.
44
,
787
(
1981
).
35.
S.
Häußler
 et al,
New J. Phys.
19
,
063036
(
2017
).
36.
E.
Neu
 et al,
Appl. Phys. Lett.
98
,
243107
(
2011
).
37.
L. J.
Rogers
 et al,
Phys. Rev. Appl.
11
,
024073
(
2019
).
38.
C.
Kurtsiefer
,
S.
Mayer
,
P.
Zarda
, and
H.
Weinfurter
,
Phys. Rev. Lett.
85
,
290
(
2000
).
39.
C.
Wang
, “
A solid-state single photon source based on color centers in diamond,” Ph.D.
thesis (
LMU
,
2007
).
40.
F.
Treussart
,
A.
Clouqueur
,
C.
Grossman
, and
J.-F.
Roch
,
Opt. Lett.
26
,
1504
(
2001
).
41.
E.
Wu
,
V.
Jacques
,
H.
Zeng
,
P.
Grangier
,
F.
Treussart
, and
J.-F.
Roch
,
Opt. Express
14
,
1296
(
2006
).
42.
G.
Thiering
and
A.
Gali
,
Phys. Rev. X
8
,
021063
(
2018
).
43.
A.
Beveratos
,
R.
Brouri
,
T.
Gacoin
,
J.-P.
Poizat
, and
P.
Grangier
,
Phys. Rev. A
64
,
061802
(
2001
).
44.
X.
Xu
 et al,
Photonics Res.
8
,
1541
(
2020
).
45.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/5.0035937 for the details growth technique, experimental setup used for optical characterization, the average and standard deviation of the parameters of the six similar GeVs, and the details on the optimization algorithm and calculations of the parameters.

Supplementary Material

You do not currently have access to this content.