Quantum causality extends the conventional notion of the fixed causal structure by allowing channels and operations to act in an indefinite causal order. The importance of such an indefinite causal order ranges from the foundational—e.g., towards a theory of quantum gravity—to the applied—e.g., for advantages in communication and computation. In this review, the authors will walk through the basic theory of indefinite causal order and focus on experiments that rely on a physically realizable indefinite causal ordered process—the quantum switch.

1.
G.
Milburn
and
S.
Shrapnel
,
Entropy
20
,
687
(
2018
).
4.
Č.
Brukner
,
Nat. Phys.
10
,
259
(
2014
).
5.
D.
Ebler
,
S.
Salek
, and
G.
Chiribella
,
Phys. Rev. Lett.
120
,
120502
(
2018
).
6.
G.
Chiribella
,
M.
Banik
,
S. S.
Bhattacharya
,
T.
Guha
,
M.
Alimuddin
,
A.
Roy
,
S.
Saha
,
S.
Agrawal
, and
G.
Kar
, arXiv:1810.10457 (
2018
).
7.
S.
Salek
,
D.
Ebler
, and
G.
Chiribella
, arXiv:1809.06655 (
2018
).
8.
G.
Chiribella
,
G. M.
D'Ariano
,
P.
Perinotti
, and
B.
Valiron
,
Phys. Rev. A
88
,
022318
(
2013
).
9.
M.
Araújo
,
F.
Costa
, and
Č.
Brukner
,
Phys. Rev. Lett.
113
,
250402
(
2014
).
10.
M.
Araújo
,
P. A.
Guérin
, and
Ä.
Baumeler
,
Phys. Rev. A
96
,
052315
(
2017
).
11.
P. A.
Guérin
,
A.
Feix
,
M.
Araújo
, and
Č.
Brukner
,
Phys. Rev. Lett.
117
,
100502
(
2016
).
12.
M.
Araújo
,
C.
Branciard
,
F.
Costa
,
A.
Feix
,
C.
Giarmatzi
, and
Č.
Brukner
,
New J. Phys.
17
,
102001
(
2015
).
13.
K.
Goswami
,
Y.
Cao
,
G. A.
Paz-Silva
,
J.
Romero
, and
A. G.
White
,
Phys. Rev. Res.
2
,
033292
(
2020
).
14.
Y.
Guo
 et al,
Phys. Rev. Lett.
124
,
030502
(
2020
).
15.
16.
O.
Oreshkov
,
F.
Costa
, and
Č.
Brukner
,
Nat. Commun.
3
,
1092
(
2012
).
17.
M.-D.
Choi
,
Linear Algebra Appl.
12
,
95
(
1975
).
18.
A.
Jamiołkowski
,
Rep. Math. Phys.
3
,
275
278
(
1972
).
19.
G.
Gutoski
and
J.
Watrous
,
Proceedings of 39th ACM STOC
(
2006
), pp.
565
574
.
20.
G.
Chiribella
,
G. M.
D'Ariano
, and
P.
Perinotti
,
Phys. Rev. A
80
,
022339
(
2009
).
21.
S.
Shrapnel
,
F.
Costa
, and
G.
Milburn
,
New J. Phys.
20
,
053010
(
2018
).
22.
G.
Chiribella
,
Phys. Rev. A
86
,
040301
(
2012
).
23.
T.
Colnaghi
,
G. M.
D'Ariano
,
S.
Facchini
, and
P.
Perinotti
,
Phys. Lett. A
376
,
2940
(
2012
).
24.
K.
Kraus
,
A.
Böhm
,
J. D.
Dollard
, and
W. H.
Wootters
,
States, Effects, and Operations Fundamental Notions of Quantum Theory
(
Springer
,
New York
,
1983
), Vol.
190
.
25.
O.
Gühne
and
G.
Tóth
,
Phys. Rep.
474
,
1
(
2009
).
26.
R. T.
Rockafellar
,
Convex Analysis
(
Princeton University Press
,
Princeton
,
1970
).
27.
G.
Rubino
,
L. A.
Rozema
,
A.
Feix
,
M.
Araújo
,
J. M.
Zeuner
,
L. M.
Procopio
,
Č.
Brukner
, and
P.
Walther
,
Sci. Adv.
3
,
e1602589
(
2017
).
28.
K.
Goswami
,
C.
Giarmatzi
,
M.
Kewming
,
F.
Costa
,
C.
Branciard
,
J.
Romero
, and
A.
White
,
Phys. Rev. Lett.
121
,
090503
(
2018
).
29.
M.
Zych
,
F.
Costa
,
I.
Pikovski
, and
Č.
Brukner
,
Nat. Commun.
10
,
3772
(
2019
).
30.
G.
Rubino
,
L. A.
Rozema
,
F.
Massa
,
M.
Araújo
,
M.
Zych
,
Č.
Brukner
, and
P.
Walther
, arXiv:1712.06884 (
2017
).
31.
M. M.
Wilde
,
Quantum Information Theory
(
Cambridge University Press
,
Cambridge
,
2013
).
33.
M.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2000
).
34.
A. A.
Abbott
,
J.
Wechs
,
D.
Horsman
,
M.
Mhalla
, and
C.
Branciard
, arXiv:1810.09826 (
2018
).
35.
P. A.
Guérin
,
G.
Rubino
, and
Č.
Brukner
,
Phys. Rev. A
99
,
062317
(
2019
).
36.
H.
Kristjánsson
,
G.
Chiribella
,
S.
Salek
,
D.
Ebler
, and
M.
Wilson
, “
Resource theories of communication
,”
New J. Phys.
22
,
073014
(
2020
).
38.
G.
Rubino
 et al, arXiv:2007.05005 (
2020
).
39.
L. M.
Procopio
 et al,
Nat. Commun.
6
,
7913
(
2015
).
40.
K.
Wei
 et al,
Phys. Rev. Lett.
122
,
120504
(
2019
).
41.
M. M.
Taddei
 et al, arXiv:2002.07817 (
2020
).
42.
A.
Hedayat
and
W. D.
Wallis
,
Ann. Stat.
6
,
1184
(
1978
).
43.
M.
Mounaix
,
N. K.
Fontaine
,
D. T.
Neilson
,
R.
Ryf
,
H.
Chen
, and
J.
Carpenter
, arXiv:1909.07003 (
2019
).
44.
J.
Wechs
,
A. A.
Abbott
, and
C.
Branciard
, “
On the definition and characterisation of multipartite causal (non)separability
,”
New J. Phys.
21
(
1
),
013027
(
2019
).
45.
A. S.
Cacciapuoti
and
M.
Caleffi
, “
Capacity bounds for quantum communications through quantum trajectories
,” arXiv:1912.08575 [quant-ph] (
2019
).
46.
M.
Caleffi
and
A. S.
Cacciapuoti
, “
Quantum switch for the quantum internet: Noiseless communications through noisy channels
,”
IEEE J. Sel. Areas Commun.
38
,
575
588
(
2020
).
You do not currently have access to this content.