The goal of machine learning is to facilitate a computer to execute a specific task without explicit instruction by an external party. Quantum foundations seek to explain the conceptual and mathematical edifice of quantum theory. Recently, ideas from machine learning have successfully been applied to different problems in quantum foundations. Here, the authors compile the representative works done so far at the interface of machine learning and quantum foundations. The authors conclude the survey with potential future directions.

1.
S.
Shalev-Shwartz
and
S.
Ben-David
,
Understanding Machine Learning: From Theory to Algorithms
(
Cambridge University
,
Cambridge, England
,
2014
).
2.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT
,
Cambridge, MA
,
2016
).
4.
J. P.
Bridge
,
S. B.
Holden
, and
L. C.
Paulson
,
J. Autom. Reason.
53
,
141
(
2014
).
5.
A.
Lavecchia
,
Drug Discovery Today
20
,
318
(
2015
).
6.
L.-F.
Arsenault
,
O.
Anatole von Lilienfeld
, and
A. J.
Millis
, “
Machine learning for many-body physics: efficient solution of dynamical mean-field theory
,” preprint arXiv:1506.08858 (
2015
).
7.
Y.
Zhang
and
E.-A.
Kim
,
Phys. Rev. Lett.
118
,
216401
(
2017
).
8.
J.
Carrasquilla
and
R. G.
Melko
,
Nat. Phys.
13
,
431
(
2017
).
9.
E. P.
Van Nieuwenburg
,
Y.-H.
Liu
, and
S. D.
Huber
,
Nat. Phys.
13
,
435
(
2017
).
10.
D.-L.
Deng
,
X.
Li
, and
S.
Das Sarma
,
Phys. Rev. B
96
,
195145
(
2017
).
11.
12.
P.
Broecker
,
J.
Carrasquilla
,
R. G.
Melko
, and
S.
Trebst
,
Sci. Rep.
7
,
1
(
2017
).
13.
K.
Chng
,
J.
Carrasquilla
,
R. G.
Melko
, and
E.
Khatami
,
Phys. Rev. X
7
,
031038
(
2017
).
14.
Y.
Zhang
,
R. G.
Melko
, and
E.-A.
Kim
,
Phys. Rev. B
96
,
245119
(
2017
).
15.
16.
W.
Hu
,
R. R.
Singh
, and
R. T.
Scalettar
,
Phys. Rev. E
95
,
062122
(
2017
).
17.
N.
Yoshioka
,
Y.
Akagi
, and
H.
Katsura
,
Phys. Rev. B
97
,
205110
(
2018
).
18.
G.
Torlai
and
R. G.
Melko
,
Phys. Rev. B
94
,
165134
(
2016
).
19.
H.-Y.
Huang
,
K.
Bharti
, and
P.
Rebentrost
, “
Near-term quantum algorithms for linear systems of equations
,” preprint arXiv:1909.07344 (
2019
).
20.
K.-I.
Aoki
and
T.
Kobayashi
,
Mod. Phys. Lett. B
30
,
1650401
(
2016
).
21.
Y.-Z.
You
,
Z.
Yang
, and
X.-L.
Qi
,
Phys. Rev. B
97
,
045153
(
2018
).
22.
M.
Pasquato
, “
Detecting intermediate mass black holes in globular clusters with machine learning
,” preprint arXiv:1606.08548 (
2016
).
23.
Y. D.
Hezaveh
,
L. P.
Levasseur
, and
P. J.
Marshall
,
Nature
548
,
555
(
2017
).
24.
R.
Biswas
 et al.,
Phys. Rev. D
88
,
062003
(
2013
).
25.
B. P.
Abbott
 et al.,
Phys. Rev. Lett.
116
,
061102
(
2016
).
26.
S. V.
Kalinin
,
B. G.
Sumpter
, and
R. K.
Archibald
,
Nat. Mater.
14
,
973
(
2015
).
27.
S. S.
Schoenholz
,
E. D.
Cubuk
,
D. M.
Sussman
,
E.
Kaxiras
, and
A. J.
Liu
,
Nat. Phys.
12
,
469
(
2016
).
28.
J.
Liu
,
Y.
Qi
,
Z. Y.
Meng
, and
L.
Fu
,
Phys. Rev. B
95
,
041101
(
2017
).
29.
L.
Huang
and
L.
Wang
,
Phys. Rev. B
95
,
035105
(
2017
).
30.
G.
Torlai
,
G.
Mazzola
,
J.
Carrasquilla
,
M.
Troyer
,
R.
Melko
, and
G.
Carleo
,
Nat. Phys.
14
,
447
(
2018
).
31.
J.
Chen
,
S.
Cheng
,
H.
Xie
,
L.
Wang
, and
T.
Xiang
,
Phys. Rev. B
97
,
085104
(
2018
).
32.
Y.
Huang
and
J. E.
Moore
, “
Neural network representation of tensor network and chiral states
,” preprint arXiv:1701.06246 (
2017
).
33.
F.
Schindler
,
N.
Regnault
, and
T.
Neupert
,
Phys. Rev. B
95
,
245134
(
2017
).
34.
T.
Haug
,
R.
Dumke
,
L.-C.
Kwek
,
C.
Miniatura
, and
L.
Amico
, “
Engineering quantum current states with machine learning
,” preprint arXiv:1911.09578 (
2019
).
35.
Z.
Cai
and
J.
Liu
,
Phys. Rev. B
97
,
035116
(
2018
).
36.
P.
Broecker
,
F. F.
Assaad
, and
S.
Trebst
, “
Quantum phase recognition via unsupervised machine learning
,” preprint arXiv:1707.00663 (
2017
).
37.
Y.
Nomura
,
A. S.
Darmawan
,
Y.
Yamaji
, and
M.
Imada
,
Phys. Rev. B
96
,
205152
(
2017
).
38.
J.
Biamonte
,
P.
Wittek
,
N.
Pancotti
,
P.
Rebentrost
,
N.
Wiebe
, and
S.
Lloyd
,
Nature
549
,
195
(
2017
).
39.
T.
Haug
,
W.-K.
Mok
,
J.-B.
You
,
W.
Zhang
,
C. E.
Png
, and
L.-C.
Kwek
, “
Classifying global state preparation via deep reinforcement learning
,” preprint arXiv:2005.12759 (
2020
).
40.
G.
Torlai
and
R. G.
Melko
,
Phys. Rev. Lett.
119
,
030501
(
2017
).
41.
42.
M.
Bukov
,
A. G.
Day
,
D.
Sels
,
P.
Weinberg
,
A.
Polkovnikov
, and
P.
Mehta
,
Phys. Rev. X
8
,
031086
(
2018
).
43.
K.
Hashimoto
,
S.
Sugishita
,
A.
Tanaka
, and
A.
Tomiya
,
Phys. Rev. D
98
,
046019
(
2018
).
44.
J.
Carifio
,
J.
Halverson
,
D.
Krioukov
, and
B. D.
Nelson
,
J. High Energy Phys.
2017
,
157
.
45.
H. W.
Lin
,
M.
Tegmark
, and
D.
Rolnick
,
J. Stat. Phys.
168
,
1223
(
2017
).
46.
A.
Cichocki
, “
Tensor networks for big data analytics and large-scale optimization problems
,” preprint arXiv:1407.3124 (
2014
).
47.
G.
Carleo
,
I.
Cirac
,
K.
Cranmer
,
L.
Daudet
,
M.
Schuld
,
N.
Tishby
,
L.
Vogt-Maranto
, and
L.
Zdeborová
,
Rev. Mod. Phys.
91
,
045002
(
2019
).
48.
V.
Dunjko
,
J. M.
Taylor
, and
H. J.
Briegel
,
Phys. Rev. Lett.
117
,
130501
(
2016
).
49.
M.
Benedetti
,
E.
Lloyd
,
S.
Sack
, and
M.
Fiorentini
,
Quantum Sci. Technol.
4
,
043001
(
2019
).
50.
L.
Hardy
and
R.
Spekkens
, “
Why physics needs quantum foundations
,” preprint arXiv:1003.5008 (
2010
).
51.
T.
Kriváchy
,
Y.
Cai
,
D.
Cavalcanti
,
A.
Tavakoli
,
N.
Gisin
, and
N.
Brunner
, “
A neural network oracle for quantum nonlocality problems in networks
,” preprint arXiv:1907.10552 (
2019
).
52.
A.
Canabarro
,
S.
Brito
, and
R.
Chaves
,
Phys. Rev. Lett.
122
,
200401
(
2019
).
53.
K.
Bharti
,
T.
Haug
,
V.
Vedral
, and
L.-C.
Kwek
, “
How to teach ai to play bell non-local games: Reinforcement learning
,” preprint arXiv:1912.10783 (
2019
).
54.
55.
R.
Iten
,
T.
Metger
,
H.
Wilming
,
L.
Del Rio
, and
R.
Renner
,
Phys. Rev. Lett.
124
,
010508
(
2020
).
56.
T. M.
Mitchell
 et al., Mach. Learn.
45
(
37
),
870
(
1997
).
57.
D.
Silver
 et al.,
Nature
550
,
354
(
2017
).
58.
G. E.
Hinton
, “
A practical guide to training restricted Boltzmann machines
,” in
Neural Networks: Tricks of the Trade
(
Springer
,
Berlin, Germany
,
2012
), pp.
599
619
.
59.
G.
Carleo
and
M.
Troyer
,
Science
355
,
602
(
2017
).
60.
J.
McCarthy
,
M. L.
Minsky
,
N.
Rochester
, and
C. E.
Shannon
,
AI Mag.
27
,
1212
(
2006
).
61.
A. M.
Turing
, “
Computing machinery and intelligence
,” in
Parsing the Turing Test
(
Springer
,
Berlin, Germany
,
2009
), p.
23
.
62.
S.
Russell
and
P.
Norvig
,
Artificial Intelligence: A Modern Approach
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2002
).
63.
C. A.
Fuchs
and
R.
Schack
,
Found. Phys.
41
,
345
(
2011
).
64.
H.
Everett
 III
,
Rev. Mod. Phys.
29
,
454
(
1957
).
65.
B. S.
DeWitt
and
N.
Graham
,
The Many Worlds Interpretation of Quantum Mechanics
(
Princeton University
,
Princeton, NJ
,
2015
).
66.
67.
J.
Barrett
,
Phys. Rev. A
75
,
032304
(
2007
).
68.
A.
Acín
and
M.
Navascués
, “
Black box quantum mechanics
,” in
Quantum [Un] Speakables II
(
Springer
,
Berlin, Germany
,
2017
), pp.
307
319
.
70.
G.
Brassard
,
H.
Buhrman
,
N.
Linden
,
A. A.
Méthot
,
A.
Tapp
, and
F.
Unger
,
Phys. Rev. Lett.
96
,
250401
(
2006
).
71.
M.
Pawłowski
,
T.
Paterek
,
D.
Kaszlikowski
,
V.
Scarani
,
A.
Winter
, and
M.
Żukowski
,
Nature
461
,
1101
(
2009
).
72.
M.
Navascués
and
H.
Wunderlich
,
Proc. R. Soc. A
466
,
881
(
2010
).
73.
N.
Linden
,
S.
Popescu
,
A. J.
Short
, and
A.
Winter
,
Phys. Rev. Lett.
99
,
180502
(
2007
).
75.
T.
Fritz
,
A.
Belén Sainz
,
R.
Augusiak
,
J.
Bohr Brask
,
R.
Chaves
,
A.
Leverrier
, and
A.
Acín
,
Nat. Commun.
4
,
1
(
2013
).
76.
K. J.
McQueen
,
Stud. Hist. Philos. Sci., Part B
49
,
10
(
2015
).
77.
R. D.
Sorkin
,
Mod. Phys. Lett. A
9
,
3119
(
1994
).
78.
O.
Oreshkov
,
F.
Costa
, and
Č.
Brukner
,
Nat. Commun.
3
,
1
(
2012
).
79.
J.-M.
Raimond
,
M.
Brune
, and
S.
Haroche
,
Rev. Mod. Phys.
73
,
565
(
2001
).
80.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
,
Rev. Mod. Phys.
81
,
865
(
2009
).
81.
W. K.
Wootters
,
Quantum Inf. Comput.
1
,
27
(
2001
).
82.
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
,
Phys. Lett. A
223
,
1
(
1996
).
83.
B. M.
Terhal
,
Theor. Comput. Sci.
287
,
313
(
2002
).
84.
P.
Krammer
,
H.
Kampermann
,
D.
Bruß
,
R. A.
Bertlmann
,
L. C.
Kwek
, and
C.
Macchiavello
,
Phys. Rev. Lett.
103
,
100502
(
2009
).
85.
A. K.
Ekert
,
C. M.
Alves
,
D. K.
Oi
,
M.
Horodecki
,
P.
Horodecki
, and
L. C.
Kwek
,
Phys. Rev. Lett.
88
,
217901
(
2002
).
86.
J.
Pearle
,
Causality
(
Cambridge University
,
Cambridge
,
2000
).
87.
S. J.
Freedman
and
J. F.
Clauser
,
Phys. Rev. Lett.
28
,
938
(
1972
).
88.
C. A.
Kocher
and
E. D.
Commins
,
Phys. Rev. Lett.
18
,
575
(
1967
).
89.
A.
Aspect
,
J. Phys. Coll.
42
,
C2-63
(
1981
).
90.
A.
Aspect
,
J.
Dalibard
, and
G.
Roger
,
Phys. Rev. Lett.
49
,
1804
(
1982
).
91.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
,
Phys. Rev. Lett.
70
,
1895
(
1993
).
92.
93.
C. H.
Bennett
,
G.
Brassard
,
S.
Popescu
,
B.
Schumacher
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. Lett.
76
,
722
(
1996
).
94.
C. H.
Bennett
and
S. J.
Wiesner
,
Phys. Rev. Lett.
69
,
2881
(
1992
).
95.
D.
Deutsch
,
Proc. R. Soc. London, A
400
,
97
(
1818
–1985).
96.
R. P.
Feynman
,
Feynman Lectures on Computation
(
CRC
,
Boca Raton, FL
2018
).
98.
N.
Brunner
,
D.
Cavalcanti
,
S.
Pironio
,
V.
Scarani
, and
S.
Wehner
,
Rev. Mod. Phys.
86
,
419
(
2014
).
99.
S.
Pironio
 et al.,
Nature
464
,
1021
(
2010
).
100.
D.
Mayers
and
A.
Yao
,
Quantum Inf. Comput.
4
,
273
(
2004
).
101.
J. F.
Clauser
,
M. A.
Horne
,
A.
Shimony
, and
R. A.
Holt
,
Phys. Rev. Lett.
23
,
880
(
1969
).
102.
S.
Kochen
and
E. P.
Specker
,
J. Math. Mech.
17
,
59
(
1967
).
103.
N.
David Mermin
,
Rev. Mod. Phys.
65
,
803
(
1993
).
104.
A.
Cabello
,
S.
Severini
, and
A.
Winter
,
Phys. Rev. Lett.
112
,
040401
(
2014
).
105.
B.
Amaral
and
M. T.
Cunha
,
On Graph Approaches to Contextuality and Their Role in Quantum Theory
(
Springer
,
Cham
,
2018
).
106.
A.
Cabello
,
V.
D'Ambrosio
,
E.
Nagali
, and
F.
Sciarrino
,
Phys. Rev. A
84
,
030302
(
2011
).
107.
K.
Bharti
,
M.
Ray
, and
L.-C.
Kwek
,
Entropy
21
,
134
(
2019
).
108.
R.
Raussendorf
,
Phys. Rev. A
88
,
022322
(
2013
).
109.
K.
Bharti
,
M.
Ray
,
A.
Varvitsiotis
,
N. A.
Warsi
,
A.
Cabello
, and
L.-C.
Kwek
,
Phys. Rev. Lett.
122
,
250403
(
2019
).
110.
S.
Mansfield
and
E.
Kashefi
,
Phys. Rev. Lett.
121
,
230401
(
2018
).
111.
D.
Saha
,
P.
Horodecki
, and
M.
Pawłowski
,
New J. Phys.
21
,
093057
(
2019
).
112.
K.
Bharti
,
M.
Ray
,
V.
Antonios
,
A.
Cabello
, and
L.-C.
Kwek
, preprint arXiv:1911.09448 (
2019
).
113.
N.
Delfosse
,
P.
Allard Guerin
,
J.
Bian
, and
R.
Raussendorf
,
Phys. Rev. X
5
,
021003
(
2015
).
114.
J.
Singh
 et al.,
Phys. Rev. A
95
,
062333
(
2017
).
115.
H.
Pashayan
,
J. J.
Wallman
, and
S. D.
Bartlett
,
Phys. Rev. Lett.
115
,
070501
(
2015
).
116.
K.
Bharti
,
A. S.
Arora
,
L. C.
Kwek
, and
J.
Roland
, “
A simple proof of uniqueness of the KCBS inequality
,” preprint arXiv:1811.05294 (
2018
).
117.
J.
Bermejo-Vega
,
N.
Delfosse
,
D. E.
Browne
,
C.
Okay
, and
R.
Raussendorf
,
Phys. Rev. Lett.
119
,
120505
(
2017
).
118.
L.
Catani
and
D. E.
Browne
,
Phys. Rev. A
98
,
052108
(
2018
).
119.
A.
Singh Arora
 et al.,
Phys. Lett. A
383
,
833
(
2019
).
120.
M.
Howard
,
J.
Wallman
,
V.
Veitch
, and
J.
Emerson
,
Nature
510
,
351
(
2014
).
121.
S.
Abramsky
and
A.
Brandenburger
,
New J. Phys.
13
(
11
),
113036
(
2011
).
122.
A.
Acín
,
T.
Fritz
,
A.
Leverrier
, and
A. B.
Sainz
,
Commun. Math. Phys.
334
,
533
(
2015
).
123.
E. N.
Dzhafarov
,
V. H.
Cervantes
, and
J. V.
Kujala
,
Philos. Trans. R. Soc., A
375
,
20160389
(
2017
).
124.
E. N.
Dzhafarov
,
Philos. Trans. R. Soc., A
377
,
20190144
(
2019
).
125.
J. V.
Kujala
and
E. N.
Dzhafarov
,
Philos. Trans. R. Soc., A
377
,
20190149
(
2019
).
126.
R. W.
Spekkens
,
Phys. Rev. A
71
,
052108
(
2005
).
127.
M. T.
Quintino
,
T.
Vértesi
,
D.
Cavalcanti
,
R.
Augusiak
,
M.
Demianowicz
,
A.
Acín
, and
N.
Brunner
,
Phys. Rev. A
92
,
032107
(
2015
).
128.
H. M.
Wiseman
,
S. J.
Jones
, and
A. C.
Doherty
,
Phys. Rev. Lett.
98
,
140402
(
2007
).
129.
E.
Schrödinger
, “
Discussion of probability relations between separated systems
,” in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University
,
Cambridge, England,
1935
), Vol.
31
, pp.
555
563
.
130.
S. G.
de Aguiar Brito
,
B.
Amaral
, and
R.
Chaves
,
Phys. Rev. A
97
,
022111
(
2018
).
131.
A.
Tavakoli
,
P.
Skrzypczyk
,
D.
Cavalcanti
, and
A.
Acín
,
Phys. Rev. A
90
,
062109
(
2014
).
132.
C.
Branciard
,
N.
Gisin
, and
S.
Pironio
,
Phys. Rev. Lett.
104
,
170401
(
2010
).
133.
M.-O.
Renou
,
E.
Bäumer
,
S.
Boreiri
,
N.
Brunner
,
N.
Gisin
, and
S.
Beigi
,
Phys. Rev. Lett.
123
,
140401
(
2019
).
135.
H.
Saito
and
M.
Kato
,
J. Phys. Soc. Jpn.
87
,
014001
(
2018
).
136.
X.
Gao
and
L.-M.
Duan
,
Nat. Commun.
8
,
1
(
2017
).
137.
U.
Schollwöck
,
Rev. Mod. Phys.
77
,
259
(
2005
).
138.
F.
Verstraete
,
V.
Murg
, and
J.
Ignacio Cirac
,
Adv. Phys.
57
,
143
(
2008
).
139.
140.
Y.-C.
Ma
and
M.-H.
Yung
,
npj Quantum Inf.
4
,
1
(
2018
).
141.
R. F.
Werner
,
Phys. Rev. A
40
,
4277
(
1989
).
142.
C.
Harney
,
S.
Pirandola
,
A.
Ferraro
, and
M.
Paternostro
, “
Entanglement classification via neural network quantum states
,”
New J. Phys
22
(4),
045001
(
2020
).
143.
S.
Lu
 et al.,
Phys. Rev. A
98
,
012315
(
2018
).
144.
C. B.
Goes
,
A.
Canabarro
,
E. I.
Duzzioni
, and
T. O.
Maciel
, “
Automated machine learning can classify bound entangled states with tomograms
,” preprint arXiv:2001.08118 (
2020
).
145.
S.
Weinstein
, “
Neural networks as ‘hidden’ variable models for quantum systems
,” preprint arXiv:1807.03910 (
2018
).
146.
147.
M.
Schuld
and
F.
Petruccione
,
Supervised Learning with Quantum Computers
(
Springer
,
Berlin, Germany
,
2018
), Vol.
17
.
148.
M.
Schuld
,
I.
Sinayskiy
, and
F.
Petruccione
,
Contemp. Phys.
56
,
172
(
2015
).
149.
V.
Dunjko
and
P.
Wittek
,
Quantum Views
4
,
32
(
2020
).
150.
A. A.
Melnikov
,
H.
Poulsen Nautrup
,
M.
Krenn
,
V.
Dunjko
,
M.
Tiersch
,
A.
Zeilinger
, and
H. J.
Briegel
,
Proc. Natl. Acad. Sci.
115
,
1221
(
2018
).
151.
M.
Krenn
,
M.
Malik
,
R.
Fickler
,
R.
Lapkiewicz
, and
A.
Zeilinger
,
Phys. Rev. Lett.
116
,
090405
(
2016
).
152.
X.
Gu
,
M.
Krenn
,
M.
Erhard
, and
A.
Zeilinger
,
Phys. Rev. Lett.
120
,
103601
(
2018
).
153.
F.
Wang
,
M.
Erhard
,
A.
Babazadeh
,
M.
Malik
,
M.
Krenn
, and
A.
Zeilinger
,
Optica
4
,
1462
(
2017
).
154.
A.
Babazadeh
,
M.
Erhard
,
F.
Wang
,
M.
Malik
,
R.
Nouroozi
,
M.
Krenn
, and
A.
Zeilinger
,
Phys. Rev. Lett.
119
,
180510
(
2017
).
155.
F.
Schlederer
,
M.
Krenn
,
R.
Fickler
,
M.
Malik
, and
A.
Zeilinger
,
New J. Phys.
18
,
043019
(
2016
).
156.
M.
Erhard
,
M.
Malik
,
M.
Krenn
, and
A.
Zeilinger
,
Nat. Photonics
12
(
12
),
759
(
2018
).
157.
M.
Malik
,
M.
Erhard
,
M.
Huber
,
M.
Krenn
,
R.
Fickler
, and
A.
Zeilinger
,
Nat. Photonics
10
(
4
),
248
(
2016
).
158.
M.
Pavičić
,
M.
Waegell
,
N. D.
Megill
, and
P. K.
Aravind
,
Sci. Rep.
9
(
1
),
1
(
2019
).
159.
J.
Tura
,
R.
Augusiak
,
A. B.
Sainz
,
T.
Vértesi
,
M.
Lewenstein
, and
A.
Acín
,
Science
344
,
1256
(
2014
).
161.
L.
Masanes
, “
Extremal quantum correlations for n parties with two dichotomic observables per site
,” preprint arXiv:quant-ph/0512100 (
2005
).
162.
T.
Le Phuc
, “
Computing quantum bell inequalities
,” preprint arXiv:1909.05472 (
2019
).
163.
D.
Poderini
,
R.
Chaves
,
I.
Agresti
,
G.
Carvacho
, and
F.
Sciarrino
, “
Exclusivity graph approach to instrumental inequalities
,” preprint arXiv:1909.09120 (
2019
).
164.
A.
Pinar Saygin
,
I.
Cicekli
, and
V.
Akman
,
Minds Machines
10
,
463
(
2000
).
You do not currently have access to this content.