Temperature variations in the ocean cause changes in the sound speed and, hence, sound propagation. This project quantified the sound speed variation achievable in a laboratory water tank. The rectangular tank has paneling that minimizes lateral reflections. Two temperature sensors measured the temperature changes over time while the water was cooled with ice, heated, and naturally warmed back to room temperature. Sound speed values were calculated using the freshwater Marczak equation. We found that while the temperature remains relatively uniform near the bottom of the tank during heating and cooling. Heating increases the sound speed at a rate of 3.5 m/s per hour, while adding ice in various quantities decreases the temperature rapidly. After rapid cooling, the water near the surface of the tank warms faster than the water near the bottom, creating a depth-dependent sound speed gradient. Eight hours after adding 380 pounds of pebble ice, the sound speed gradient was 10.7 m/s per meter. The water temperature variability in these tank measurements replicates a portion of the sound speed variability seen in the ocean. This sound speed variability can then be used to test the robustness of machine learning algorithms.
Skip Nav Destination
Article navigation
8 May 2022
184th Meeting of the Acoustical Society of America
8–12 May 2023
Chicago, Illinois
Underwater Acoustics: Paper 3pUW2
July 25 2023
Temperature-induced sound speed variability in a laboratory water tank
Alexandra M. Hopps-McDaniel;
Alexandra M. Hopps-McDaniel
1
Department of Physics and Astronomy, Brigham Young University
, Provo, UT, 84602, USA
; mcdaniel.alexh@gmail.com; tbn@byu.edu
Search for other works by this author on:
Tracianne B. Neilsen
Tracianne B. Neilsen
1
Department of Physics and Astronomy, Brigham Young University
, Provo, UT, 84602, USA
; mcdaniel.alexh@gmail.com; tbn@byu.edu
Search for other works by this author on:
Proc. Mtgs. Acoust. 51, 070001 (2023)
Article history
Received:
June 21 2023
Accepted:
July 10 2023
Connected Content
This is a companion to:
Introducing sound speed variability in laboratory water tank
Citation
Alexandra M. Hopps-McDaniel, Tracianne B. Neilsen; Temperature-induced sound speed variability in a laboratory water tank. Proc. Mtgs. Acoust. 8 May 2023; 51 (1): 070001. https://doi.org/10.1121/2.0001757
Download citation file:
47
Views
Citing articles via
Related Content
T-pebbling number and 2t-pebbling property for book graphs
AIP Conference Proceedings (June 2023)
Industrial effluent treatment: Theoretical and experimental analysis
J. Renewable Sustainable Energy (February 2011)
Experience from commissioning tests on ENEA’s thermocline molten salt/pebbles pilot plant
AIP Conference Proceedings (December 2020)
Acoustic backscatter at very high frequencies from rough seabeds
J Acoust Soc Am (October 2004)
Cartesian normal-mode models for a mid-size laboratory water tank
Proc. Mtgs. Acoust. (November 2021)