A laboratory water tank at Brigham Young University is being characterized, and a suitable model is needed to describe the sound propagation, which includes realistic boundary conditions. Two Cartesian normal-mode models are compared: one begins with pressure release boundary conditions then adds wall losses and the other begins with rigid boundary conditions for the walls and incorporates finite impedance through spatially averaged absorption. The models are updated to remove assumptions for smaller glass tanks and to include estimates of the characteristic acoustic impedance of the wall material. Each model is sensitive to the number of modes used. The modeled transmission loss values at 10 Hz to 100 kHz are computed for the rectangular acrylic tank (3.6 m x 1.2 m wide with water depths of 0.47 m and 0.24 m x 0.48 m). The modeled values are compared to measured data via relative transmission loss estimates as a function of distance. The tank sound propagation model will allow us to model our tank, simulate the sound field for optimization problems, and create accurate training data for machine learning applications.
Skip Nav Destination
Article navigation
29 November 2021
181st Meeting of the Acoustical Society of America
29 November–3 December 2021
Seattle, Washington
Underwater Acoustics: Paper 3aUW1
July 01 2022
Cartesian normal-mode models for a mid-size laboratory water tank
Kaylyn N. Terry;
Kaylyn N. Terry
1
Department of Physics and Astronomy, Brigham Young University
, Provo, UT, 84602, USA
; kaylynterry@gmail.com; cvongsawad@gmail.com; tbn@byu.edu
Search for other works by this author on:
Cameron T. Vongsawad;
Cameron T. Vongsawad
1
Department of Physics and Astronomy, Brigham Young University
, Provo, UT, 84602, USA
; kaylynterry@gmail.com; cvongsawad@gmail.com; tbn@byu.edu
Search for other works by this author on:
Tracianne B. Neilsen
Tracianne B. Neilsen
1
Department of Physics and Astronomy, Brigham Young University
, Provo, UT, 84602, USA
; kaylynterry@gmail.com; cvongsawad@gmail.com; tbn@byu.edu
Search for other works by this author on:
Proc. Mtgs. Acoust. 45, 070007 (2021)
Article history
Received:
April 18 2022
Accepted:
June 20 2022
Connected Content
This is a companion to:
Mode-based models with realistic boundary conditions for a laboratory tank
Citation
Kaylyn N. Terry, Cameron T. Vongsawad, Tracianne B. Neilsen; Cartesian normal-mode models for a mid-size laboratory water tank. Proc. Mtgs. Acoust. 29 November 2021; 45 (1): 070007. https://doi.org/10.1121/2.0001567
Download citation file: