Burst wave lithotripsy (BWL) is a potential noninvasive treatment for breaking kidney stones. BWL requirements of high-pressure output, limited aperture for acoustic window, and specific focal length and frequency constrain the focal beam width. However, BWL is most effective only on stones smaller than the beam width. We tested a porous piezoelectric material (PZ36) to increase the output power and designed acoustic lenses that broaden the beam. A weighted iterative angular spectrum approach was used to calculate the source phase distribution needed to generate desired cross sectional focal beam profiles each of 12 mm width. The phase calculations were then 3D printed as holographic lenses placed over a circular aperture of 80-mm diameter, 350 kHz PZ36 to produce the desired beam at 85 mm depth. The difference in simulated beam width and that measured by hydrophone was <1 mm, and the structural-similarity index value was greater than 0.65. The differences in structures were due not to shape and size of the 6-dB contours but to amplitude distribution within the contour. In conclusion, this design approach combined with 3D printing provides a way to tailor focal beam profiles for lithotripsy transducers.

This content is only available via PDF.