Evaluation of possible effects of underwater sound on aquatic life requires quantification of the sound field. A marine sound source and propagation modelling workshop took place in June 2022, whose objectives were to facilitate the evaluation of source and propagation models and to identify relevant metrics for environmental impact assessment. The scope of the workshop included model verification (model-model comparison) and model validation (model-measurement comparison) for multiple sources, including airguns, a low-frequency multi-beam echo sounder, and a surface vessel. Several verification scenarios were specified for the workshop; these are described herein.

Acoustical terminology follows ISO (2017), supplemented by definitions from other sources as indicated (Table I). Reference values (Table II) are needed when expressing levels in decibels. The reference value for the source level is pref2rref2. The reference value for the source spectral density level is pref2rref2/fref. Selected units outside the International System of Units (SI) are listed in Table III.

TABLE I.

List of symbols, quantity names, and definitions.

Symbol Quantity Name Definition Unit
a  Low frequency weighting function exponent  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
a(t)  Sound particle acceleration  ISO 18405 (3.1.2.11) (ISO, 2017 m/s2 
a(t)    Magnitude of sound particle acceleration  m/s2 
a2¯  Mean square sound particle acceleration  ISO 18405 (3.1.3.4) (ISO, 2017 (m/s2)2 
a2¯  Depth-averaged mean square sound particle acceleration  a2¯=1H0Ha2¯dz  (m/s2)2 
apk,BD    Zero-to-peak sound particle acceleration in ADEON band BD (Ainslie , 2018 m/s2 
ar(t)    r-component of sound particle acceleration [see Eq. (2) m/s2 
az(t)    z-component of sound particle acceleration [see Eq. (2) m/s2 
A(f)  Sound particle acceleration spectrum  Af=+atexp2πiftdt  (m/s2)/Hz 
A(f)    Magnitude of sound particle acceleration spectrum
see Eq. (5) 
(m/s2)/Hz 
Ar(f)    r-component of sound particle acceleration spectrum [see Eq. (3) (m/s2)/Hz 
Az(f)    z-component of sound particle acceleration spectrum [see Eq. (3) (m/s2)/Hz 
b  High frequency weighting function exponent  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
c  Sound speed  Phase speed (ISO 80000-3) (ISO, 2019a) of a sound wave  m/s 
D(u)    Beam pattern of a circular transducer [see Eq. (44)
Ea  Sound particle acceleration exposure    (m/s2)2
Ea,BD    Sound particle acceleration exposure in ADEON band BD (Ainslie , 2018 (m/s2)2
Ep  Sound pressure exposure  ISO 18405 (3.1.3.5) (ISO, 2017 Pa2
Ep,ddecf    Decidecade band sound pressure exposure  Pa2
Ep,LF    Low frequency (LF)-weighted sound pressure exposure  Pa2
Ep,LF,cum    Cumulative LF-weighted sound pressure exposure  Pa2
Ep,SV    Sound pressure exposure in band SV  Pa2
Ep,VHF    Very high frequency (VHF)-weighted sound pressure exposure  Pa2
Ep,w  Weighted sound pressure exposure  ISO 18405 (3.7.1.2) (ISO, 2017 Pa2
Ew    Ew=0wfEffdf  Pa2
Ew,aud    Ew,aud=0waudfEffdf  Pa2
Ew,Π    Ew,Π=0wΠfEffdf  Pa2
Eff    Eff=2Pf2  Pa2 s/Hz 
f  Acoustic frequency  ISO 80000-3 (ISO, 2019a Hz 
fhi  Higher auditory roll-off frequency  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
Hz 
flo  Lower auditory roll-off frequency  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
Hz 
fmax  Upper limit of frequency band  Eq. (33)  Hz 
fmin  Lower limit of frequency band  Eq. (33)  Hz 
fn  Decidecade band centre frequency  Centre frequency of decidecade band (integer index n Hz 
Fa  Sound particle acceleration propagation factor  Fa=a2¯FS  (m/s2)2/(Pa2 m2
Fa,H  Depth-averaged sound particle acceleration propagation factor  Fa,H=a2¯FS  (m/s2)2/(Pa2 m2
Fp  Sound pressure propagation factor
Synonym: propagation factor 
Fp=p2¯FS ISO 18405 (3.4.1.1) (ISO, 2017 Pa2 /(Pa2 m2
Fp,H  Depth-averaged sound pressure propagation factor  Fp,H=p2¯FS  Pa2 /(Pa2 m2
FS  Source factor  FS=10LS/10dBpref2rref2 ISO 18405 (3.3.1.6) (ISO, 2017 Pa2 m2 
FS,ff  Source factor spectral density  “Distribution as a function of nonnegative frequency of the source factor per unit bandwidth of a source having a continuous spectrum”
Source: ADEON (Ainslie , 2020
Pa2 m2/Hz 
h  Sediment thickness   
H  Water depth   
K    ratio of attenuation coefficient to frequency  dB/(m Hz) 
LS  Source level  ISO 18405 (3.3.2.1) (ISO, 2017 dB 
LS,ff  Source spectral density level  “Level of the source factor spectral density”
In equation form:
LS,ff=10log10FS,ffpref2rref2/frefdB source: ADEON (Ainslie , 2020
dB 
LS,f,n    Source spectral density level in decidecade band with index n  dB 
p(t)  Sound pressure  ISO 18405 (3.1.2.1) (ISO, 2017 Pa 
p2¯  Mean square sound pressure  ISO 18405 (3.1.3.1) (ISO, 2017 Pa2 
p2¯  Depth-averaged mean square sound pressure  p2¯=1H0Hp2¯dz  Pa2 
ppk  Zero-to-peak sound pressure  ISO 18405 (3.1.2.3) (ISO, 2017 Pa 
ppk,SV  Zero-to-peak sound pressure in band SV    Pa 
pw  Weighted sound pressure  ISO 18405 (3.7.1.1) (ISO, 2017 Pa 
P(f)  Sound pressure spectrum  Pf=+ptexp2πiftdt ISO 18405 (3.1.2.2) (ISO, 2017 Pa/Hz 
Pair    Pressure of the compressed air inside the airgun just before it is fired  Pa 
Patm  Atmospheric pressure  Patm = 101.325 kPa  Pa 
Pg  Airgun chamber pressure  “Difference between the pressure of the compressed air inside the airgun just before it is fired [ Pair] and atmospheric pressure [ Patm] ”
Pg=PairPatmPrior (2021)  
Pa 
r  Horizontal range   
s(t)  Source waveform  ISO 18405 (3.3.1.4) (ISO, 2017 Pa m 
S(f)  Source spectrum  Sf=+stexp2πiftdt ISO 18405 (3.3.1.8) (ISO, 2017 Pa m/Hz 
s(t)  Surface-affected source waveform  ISO 18405 (3.3.1.7) (ISO, 2017 Pa m 
S(f)  Surface-affected source spectrum  Sf=+stexp2πiftdt ISO 18405 (3.3.1.9) (ISO, 2017 Pa m/Hz 
V  Ship speed    m/s 
wf  Frequency weighting function  ISO 18405 (3.7.1.6) (ISO, 2017
waudf  Auditory frequency Weighting function  ISO 18405 (3.7.1.7) (ISO, 2017
wΠf  Rectangular frequency weighting function  See Eq. (31) 
Waudf  Logarithmic auditory frequency weighting function  Waudf=10log10waudfdB  dB 
α  Attenuation coefficient  Quantity α in the equation
α=10log10XRdB where X is the relative power of a plane wave having travelled a distance R
Note: It follows from this definition that
X=10αR/10dB Example: If after travelling a distance R = 1 km, the amplitude of a plane wave decays to 1/10 of its value at R = 0, the relative power is 1/100 and α = 20 dB/km = 0.02 dB/m. 
dB/m 
β  Attenuation per wavelength  β=αλ  dB 
ϵ    Quantity ϵ in the equation
ϵ=flo2fhiba1/21abAinslie (2021)  
λ  Acoustic wavelength  Wavelength (ISO 80000-3, 3-19) (ISO, 2019a) of a sound wave 
μ    Quantity μ in Munk's sound speed profile; see Eqs. (11) and (13) 
ν    Quantity ν in Eq. (26)
ν2=ab1/2flofhi1+ϵ21/2ϵ(see Table XX for numerical values)
Ainslie (2021)  
Hz 
Πx  Rectangle function  Πx=1x<1/20x>1/2 
ρ  Mass density
Synonym: density 
ISO 80000-4 (ISO, 2019b kg/m3 
Symbol Quantity Name Definition Unit
a  Low frequency weighting function exponent  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
a(t)  Sound particle acceleration  ISO 18405 (3.1.2.11) (ISO, 2017 m/s2 
a(t)    Magnitude of sound particle acceleration  m/s2 
a2¯  Mean square sound particle acceleration  ISO 18405 (3.1.3.4) (ISO, 2017 (m/s2)2 
a2¯  Depth-averaged mean square sound particle acceleration  a2¯=1H0Ha2¯dz  (m/s2)2 
apk,BD    Zero-to-peak sound particle acceleration in ADEON band BD (Ainslie , 2018 m/s2 
ar(t)    r-component of sound particle acceleration [see Eq. (2) m/s2 
az(t)    z-component of sound particle acceleration [see Eq. (2) m/s2 
A(f)  Sound particle acceleration spectrum  Af=+atexp2πiftdt  (m/s2)/Hz 
A(f)    Magnitude of sound particle acceleration spectrum
see Eq. (5) 
(m/s2)/Hz 
Ar(f)    r-component of sound particle acceleration spectrum [see Eq. (3) (m/s2)/Hz 
Az(f)    z-component of sound particle acceleration spectrum [see Eq. (3) (m/s2)/Hz 
b  High frequency weighting function exponent  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
c  Sound speed  Phase speed (ISO 80000-3) (ISO, 2019a) of a sound wave  m/s 
D(u)    Beam pattern of a circular transducer [see Eq. (44)
Ea  Sound particle acceleration exposure    (m/s2)2
Ea,BD    Sound particle acceleration exposure in ADEON band BD (Ainslie , 2018 (m/s2)2
Ep  Sound pressure exposure  ISO 18405 (3.1.3.5) (ISO, 2017 Pa2
Ep,ddecf    Decidecade band sound pressure exposure  Pa2
Ep,LF    Low frequency (LF)-weighted sound pressure exposure  Pa2
Ep,LF,cum    Cumulative LF-weighted sound pressure exposure  Pa2
Ep,SV    Sound pressure exposure in band SV  Pa2
Ep,VHF    Very high frequency (VHF)-weighted sound pressure exposure  Pa2
Ep,w  Weighted sound pressure exposure  ISO 18405 (3.7.1.2) (ISO, 2017 Pa2
Ew    Ew=0wfEffdf  Pa2
Ew,aud    Ew,aud=0waudfEffdf  Pa2
Ew,Π    Ew,Π=0wΠfEffdf  Pa2
Eff    Eff=2Pf2  Pa2 s/Hz 
f  Acoustic frequency  ISO 80000-3 (ISO, 2019a Hz 
fhi  Higher auditory roll-off frequency  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
Hz 
flo  Lower auditory roll-off frequency  Eq. (26) (see Table XX for numerical values)
Ainslie (2021)  
Hz 
fmax  Upper limit of frequency band  Eq. (33)  Hz 
fmin  Lower limit of frequency band  Eq. (33)  Hz 
fn  Decidecade band centre frequency  Centre frequency of decidecade band (integer index n Hz 
Fa  Sound particle acceleration propagation factor  Fa=a2¯FS  (m/s2)2/(Pa2 m2
Fa,H  Depth-averaged sound particle acceleration propagation factor  Fa,H=a2¯FS  (m/s2)2/(Pa2 m2
Fp  Sound pressure propagation factor
Synonym: propagation factor 
Fp=p2¯FS ISO 18405 (3.4.1.1) (ISO, 2017 Pa2 /(Pa2 m2
Fp,H  Depth-averaged sound pressure propagation factor  Fp,H=p2¯FS  Pa2 /(Pa2 m2
FS  Source factor  FS=10LS/10dBpref2rref2 ISO 18405 (3.3.1.6) (ISO, 2017 Pa2 m2 
FS,ff  Source factor spectral density  “Distribution as a function of nonnegative frequency of the source factor per unit bandwidth of a source having a continuous spectrum”
Source: ADEON (Ainslie , 2020
Pa2 m2/Hz 
h  Sediment thickness   
H  Water depth   
K    ratio of attenuation coefficient to frequency  dB/(m Hz) 
LS  Source level  ISO 18405 (3.3.2.1) (ISO, 2017 dB 
LS,ff  Source spectral density level  “Level of the source factor spectral density”
In equation form:
LS,ff=10log10FS,ffpref2rref2/frefdB source: ADEON (Ainslie , 2020
dB 
LS,f,n    Source spectral density level in decidecade band with index n  dB 
p(t)  Sound pressure  ISO 18405 (3.1.2.1) (ISO, 2017 Pa 
p2¯  Mean square sound pressure  ISO 18405 (3.1.3.1) (ISO, 2017 Pa2 
p2¯  Depth-averaged mean square sound pressure  p2¯=1H0Hp2¯dz  Pa2 
ppk  Zero-to-peak sound pressure  ISO 18405 (3.1.2.3) (ISO, 2017 Pa 
ppk,SV  Zero-to-peak sound pressure in band SV    Pa 
pw  Weighted sound pressure  ISO 18405 (3.7.1.1) (ISO, 2017 Pa 
P(f)  Sound pressure spectrum  Pf=+ptexp2πiftdt ISO 18405 (3.1.2.2) (ISO, 2017 Pa/Hz 
Pair    Pressure of the compressed air inside the airgun just before it is fired  Pa 
Patm  Atmospheric pressure  Patm = 101.325 kPa  Pa 
Pg  Airgun chamber pressure  “Difference between the pressure of the compressed air inside the airgun just before it is fired [ Pair] and atmospheric pressure [ Patm] ”
Pg=PairPatmPrior (2021)  
Pa 
r  Horizontal range   
s(t)  Source waveform  ISO 18405 (3.3.1.4) (ISO, 2017 Pa m 
S(f)  Source spectrum  Sf=+stexp2πiftdt ISO 18405 (3.3.1.8) (ISO, 2017 Pa m/Hz 
s(t)  Surface-affected source waveform  ISO 18405 (3.3.1.7) (ISO, 2017 Pa m 
S(f)  Surface-affected source spectrum  Sf=+stexp2πiftdt ISO 18405 (3.3.1.9) (ISO, 2017 Pa m/Hz 
V  Ship speed    m/s 
wf  Frequency weighting function  ISO 18405 (3.7.1.6) (ISO, 2017
waudf  Auditory frequency Weighting function  ISO 18405 (3.7.1.7) (ISO, 2017
wΠf  Rectangular frequency weighting function  See Eq. (31) 
Waudf  Logarithmic auditory frequency weighting function  Waudf=10log10waudfdB  dB 
α  Attenuation coefficient  Quantity α in the equation
α=10log10XRdB where X is the relative power of a plane wave having travelled a distance R
Note: It follows from this definition that
X=10αR/10dB Example: If after travelling a distance R = 1 km, the amplitude of a plane wave decays to 1/10 of its value at R = 0, the relative power is 1/100 and α = 20 dB/km = 0.02 dB/m. 
dB/m 
β  Attenuation per wavelength  β=αλ  dB 
ϵ    Quantity ϵ in the equation
ϵ=flo2fhiba1/21abAinslie (2021)  
λ  Acoustic wavelength  Wavelength (ISO 80000-3, 3-19) (ISO, 2019a) of a sound wave 
μ    Quantity μ in Munk's sound speed profile; see Eqs. (11) and (13) 
ν    Quantity ν in Eq. (26)
ν2=ab1/2flofhi1+ϵ21/2ϵ(see Table XX for numerical values)
Ainslie (2021)  
Hz 
Πx  Rectangle function  Πx=1x<1/20x>1/2 
ρ  Mass density
Synonym: density 
ISO 80000-4 (ISO, 2019b kg/m3 
TABLE II.

List of reference values.

Symbol Name Value Reference
fref  Reference value of acoustic frequency  1Hz  ANSI S1.8-1989 
pref  Reference value of sound pressure  1μPa  ISO 1683:2015 
rref  Reference value of distance  1m  ISO 1683:2015 
Symbol Name Value Reference
fref  Reference value of acoustic frequency  1Hz  ANSI S1.8-1989 
pref  Reference value of sound pressure  1μPa  ISO 1683:2015 
rref  Reference value of distance  1m  ISO 1683:2015 
TABLE III.

List of non-SI unit symbols.

Unit symbol Unit name Exact value (NIST SP1038) Rounded to six significant figures
dB  decibel     
in3  cubic inch  (25.4 mm)3  16.3871 mL 
kn  knot  1852 m/(3600 s)  0.514 444 m/s 
lbf/in2  pound-force per square inch  6894.757 Pa  6894.76 Pa 
Unit symbol Unit name Exact value (NIST SP1038) Rounded to six significant figures
dB  decibel     
in3  cubic inch  (25.4 mm)3  16.3871 mL 
kn  knot  1852 m/(3600 s)  0.514 444 m/s 
lbf/in2  pound-force per square inch  6894.757 Pa  6894.76 Pa 

A marine sound source and propagation modelling workshop took place in June 2022. The workshop, which was sponsored by the E&P Sound and Marine Life Joint Industry Programme (JIP), is referred to henceforth as the JIP Acoustic Modelling (JAM) Workshop; Ainslie (2023)]. The scope of the JAM Workshop included:

  • Model verification (model-model comparison) for airguns, an airgun array, a low-frequency multi-beam echo sounder (LF MBES), and a surface vessel (eight verification scenarios); and

  • Model validation (model-measurement comparison) for airguns and an airgun array, and a surface vessel (four validation scenarios).

The objectives of the workshop were to:

  • Facilitate evaluation of source models (especially airgun array models);

  • Facilitate evaluation of propagation models;

  • Identify relevant metrics for environmental impact assessment; and

  • Promulgate results and conclusions.

The purpose of this paper is to specify the eight verification scenarios, thus avoiding the need for individual authors to duplicate this information. Four verification scenarios involve airguns, which create sound by releasing a bubble of compressed air into the water (Ewing and Zaunere, 1964). The four validation scenarios are specified separately (Ainslie , 2024).

Although the details of each scenario were, to an extent, arbitrary, it was valuable to have a set of well-defined verification scenarios not only to ensure that the workshop participants worked on the same specification but also so that later researchers, if they wish, can use them to perform a direct comparison of their work with that of others.

In principle, for the source waveform (by definition, a far-field quantity) only the spatial direction (not the origin) needs to be specified. Whereas the source waveform of a monopole is independent of direction, the surface-affected source waveform of a monopole (which includes the contribution from the monopole's surface-reflected image), or the source waveform of more complex sources, varies with direction. The source waveform of a single airgun or airgun cluster is typically represented in modelling codes as a monopole, in which case the source waveform does not depend on direction. This approximation is acceptable at low frequencies because the sound wavelength is large compared with the dimensions of the bubble, but it might not be a good approximation at high frequencies. In the airgun verification scenarios, the individual airguns are specified to behave as monopoles at all frequencies.

The case for model verification in underwater acoustics was made eloquently by Professor Leo Felsen more than 30 years ago (Felsen, 1990): “After spending many frustrating hours trying to account for unexplained wiggles in certain data, and finally contacting the originator of the data for clues, it often turned out that what I had regarded as a real observable was actually computational artifact.” Felsen's article was one of a series of publications in the April 1990 issue of JASA (pp. 1497–1545), all addressing one or more test cases that had been specified for an ASA special session in 1986 (Felsen, 1990). One of the test scenarios specified in the April 1990 issue involved a penetrable wedge environment referred to as “Benchmark case III” (penetrable lossy bottom), for which solutions were presented by multiple authors in March and April 1990 using different techniques (Collins, 1990a,b; Jensen and Ferla, 1990; Thomson, 1990; Westwood, 1990). Differences of 1–2 dB were observed between solution methods for an identical carefully specified problem (Jensen and Ferla, 1990), which meant that at least some of the 1990 solutions for case III were in error. The discrepancy was fully resolved by Collins and Evans (1992), who showed close agreement for case III between the energy-conserving parabolic equation and two-way parabolic equation solutions, which are now accepted as correct. The point is that many one-way propagation codes of the time were missing part of the physics, introducing an artefact that was only removed by concerted effort by multiple modellers on an identical problem, thus motivating the present work.

This paper describes eight model verification scenarios for the JAM Workshop. There are four main source types (monopole, airgun(s), LF MBES (sonar), and surface vessel), denoted by the upper case letters A-D, respectively, followed by an integer to distinguish between scenarios for the same type (Table IV).

TABLE IV.

Verification scenarios: qualitative description.

Scenario ID Source type [source depth] Propagation medium [water depth] Detailed scenario description
A1  Monopole CW [5 m]  Pekeris waveguide, sand seabed [50 m]  Sec. III; see also Ainslie (2019)  
A2  Monopole CW [7 m]  Munk waveguide, clayey silt seabed [1500 m]  Sec. IV; see also Munk (1974)  
B1  Single airgun: specified source waveform [5 m]  as A1  Sec. V: Dublin S1 see also Ainslie (2019)  
B2  Single airgun: 2.0 L [6 m]  [ Sec. VI: Svein Vaage 
B3  Airgun cluster: 4.1 L [6 m]  [ Sec. VII: Svein Vaage 
B4  Airgun array: 67.8 L [7 m]  as A2  Sec. VIII: Gulf of Mexico, SCS07 
C1  LF MBES (12 kHz) [7 m]  as A2  Sec. IX; see also Lurton (2016)  
D1  bulk carrier [6 m]  [192 m]  Sec. X: ECHO 
Scenario ID Source type [source depth] Propagation medium [water depth] Detailed scenario description
A1  Monopole CW [5 m]  Pekeris waveguide, sand seabed [50 m]  Sec. III; see also Ainslie (2019)  
A2  Monopole CW [7 m]  Munk waveguide, clayey silt seabed [1500 m]  Sec. IV; see also Munk (1974)  
B1  Single airgun: specified source waveform [5 m]  as A1  Sec. V: Dublin S1 see also Ainslie (2019)  
B2  Single airgun: 2.0 L [6 m]  [ Sec. VI: Svein Vaage 
B3  Airgun cluster: 4.1 L [6 m]  [ Sec. VII: Svein Vaage 
B4  Airgun array: 67.8 L [7 m]  as A2  Sec. VIII: Gulf of Mexico, SCS07 
C1  LF MBES (12 kHz) [7 m]  as A2  Sec. IX; see also Lurton (2016)  
D1  bulk carrier [6 m]  [192 m]  Sec. X: ECHO 

Each scenario specifies the characteristics of an underwater sound source and of the medium in which the sound propagates to a receiver. From this information, workshop participants were invited to make predictions of quantities associated with the sound field produced by the source (e.g., sound pressure, sound particle acceleration, propagation loss), and of the source itself (e.g., source waveform and source spectrum). The purpose is to verify the suitability of source and propagation models for environmental impact assessment by quantifying differences between model predictions prior to model validation. The four validation scenarios, known as b2, b3, b4, and d1 (Ainslie , 2024), are closely related to the verification scenarios (B2, B3, B4, and D1). The intention is that models verified on one or more of these verification scenarios would then be validated using the corresponding validation scenario.

All verification scenarios involve a smooth horizontal pressure release sea surface, implying perfect specular reflection, with a π phase change and no scattering, and a fluid seabed with constant water depth. Scenarios A1, B1, B2, and B3 assume isovelocity and lossless seawater, while A2, B4, and C1 are for a deep water Munk profile with Horton-Thorp attenuation. Finally, D1 uses an isothermal profile, also with Horton-Thorp attenuation. The water current is zero for all verification scenarios.

The purpose of making these simplifications in the verification scenarios is to avoid unnecessary differences when comparing model output and to focus instead on differences between modelling methods. The validation scenarios remove these simplifications and apply them to real-world measurements.

For all verification scenarios, the intended result is the solution to the linear wave equation for the specified source and propagation medium. All scenarios specified in this paper are verification scenarios.

Of the manuscripts submitted to this special issue, about one third described contributions to the JAM Workshop, of which two (Dahl , 2024; Petrov , 2024) have been published at the time of writing. The complete set of model verification scenarios described in this paper provides information for others who wish to test new approaches to any of the test cases.

No time origin is specified. For each scenario, once a time origin is selected, it should be kept fixed for that scenario.

Three spatial coordinate systems are used:

  • Cartesian coordinates are used to specify the three-dimensional (3-D) geometry. A right-handed Cartesian coordinate system is adopted with x increasing ahead, y increasing to starboard, and z increasing downward. The spatial origin is at the sea surface. Cartesian coordinates are used for scenarios B2, B3, B4, C1 and D1. For B4 a distinction is made between “world coordinates,” which are stationary in a reference frame on the Earth's surface, and “array coordinates,” which are stationary in the source array frame of reference, and otherwise aligned with the world coordinates.

  • Spherical polar coordinates are used to characterize the dependence of the source waveform on emission direction: bearing and elevation. The elevation angle (θ) is relative to the vertical downward direction, always non-negative and increasing upward from the downgoing vertical direction. The bearing angle (φ) is measured clockwise seen from the previous from the Cartesian x-axis.

  • Cylindrical polar coordinates (r,z) are used for acceleration [e.g., B1 (Table X), B2 (Table XII), B3 (Table XIII)]. The horizontal and vertical coordinates of acceleration are denoted art and azt, respectively, as described in the following.

The sound particle acceleration spectrum Af is the Fourier transform of the sound particle acceleration at,
(1)
where at and Af are the vectors, in cylindrical polar coordinates
(2)
and
(3)
The corresponding scalar magnitudes are
(4)
and
(5)
When the attenuation coefficient α is proportional to frequency, it is convenient to multiply it by the wavelength λ to obtain
(6)
where X is the relative power of a plane wave having travelled a distance R (see Table I).
Given R/ λ is the distance in wavelengths, it follows that α is the attenuation per wavelength (denoted β),
(7)
For example, if β = 0.2 dB, the sediment attenuation coefficient is sometimes written in the form
(8)
giving the impression that dB/λ is a unit when in reality it is a mixture of a unit (decibel, dB) and a variable (wavelength, λ=c/f). The intended meaning of Eq. (8) is αλ = 0.2 dB, i.e., (for the example considered), if c = 2000 m/s,
(9)
where F is the frequency in kilohertz, i.e.,
(10)

Scenario A1 (scenario id: A1R) involves a point source in shallow water (depth 50 m) and a sand seabed, with frequencies between 10 Hz and 10 kHz. It is based on Ainslie (2019) and Küsel and Siderius (2019). See Fig. 1.

FIG. 1.

(Color online) Scenarios A1 and B1: Source position and propagation medium. Diagram by M. B. Halvorsen.

FIG. 1.

(Color online) Scenarios A1 and B1: Source position and propagation medium. Diagram by M. B. Halvorsen.

Close modal

1. Source

The acoustic source is a monopole emitting a sine wave at a specified frequency. The source depth is 5 m. Requested frequencies are 10, 100, 1000, and 10 000 Hz. Optional additional frequencies are 50 and 500 Hz.

2. Propagation medium

The propagation medium is a Pekeris waveguide (Pekeris, 1948) specified in Table V (see also Fig. 1). The water depth is 50 m. The sea surface and seabed are flat (not rough), and the sea surface has a reflection coefficient of minus one.

TABLE V.

Water and sediment properties for Scenarios A1 and B1.

Property Layer thickness / m Density (ρ) / (kg m−3) Sound speed (c)/(m s−1) Attenuation per wavelength (β)
Water  50  1000  1500 
Sediment    2000  1700  0.5 dB 
Property Layer thickness / m Density (ρ) / (kg m−3) Sound speed (c)/(m s−1) Attenuation per wavelength (β)
Water  50  1000  1500 
Sediment    2000  1700  0.5 dB 

The sediment attenuation coefficient is α=0.5f/cseddB, where csed = 1700 m/s is the sediment sound speed (Table V). This can be written α=Kf, with K0.2941 dB/(m kHz).

Requested outputs for each source frequency are listed in Table VI. The output quantities are to be provided vs horizontal range (0–30 km).

TABLE VI.

Scenario A1: Output quantities. Frequencies in bold font are the preferred ones.

Output quantity Receiver depth / m Receiver range / m Frequency / Hz
Fp, Fa  15  0–30 000  10, 50, 100, 500, 1000, 10 000 
Fp,H, Fa,H  n/a  0–30 000  10, 50, 100, 500, 1000, 10 000 
Fp, Fa  0–50  12 500  10, 50, 100, 500, 1000, 10 000 
Output quantity Receiver depth / m Receiver range / m Frequency / Hz
Fp, Fa  15  0–30 000  10, 50, 100, 500, 1000, 10 000 
Fp,H, Fa,H  n/a  0–30 000  10, 50, 100, 500, 1000, 10 000 
Fp, Fa  0–50  12 500  10, 50, 100, 500, 1000, 10 000 

Scenario A2 (scenario id: A2R) involves a point source in deep water (depth 1500 m) and a clayey silt seabed, with frequencies between 10 Hz and 10 kHz. It is a deep water propagation problem with a Munk sound speed profile.

1. Source

The acoustic source is a monopole emitting a sine wave at a specified frequency. The source depth is 7 m. Requested frequencies are 10 Hz, 100 Hz, 1000 Hz and 10 000 Hz.

2. Propagation medium

a. Water.
The water depth is 1500 m. Density is 1000 kg/m3. The sound speed profile is a generic deep water Munk profile (Munk, 1974) (see Fig. 2),
(11)
where
(12)
and the constant μ is
(13)
FIG. 2.

(Color online) Scenario B4: Munk sound speed profile.

FIG. 2.

(Color online) Scenario B4: Munk sound speed profile.

Close modal

The channel axis depth (z1) and the sound speed at that depth (c1) are parameters selected to match the Gulf of Mexico profile. The axis depth is estimated from Sidorovskaia and Li (2022) as z1 = 800 m.

The value of c1 is obtained by rearranging Eq. (11),
(14)
with
(15)
and therefore
(16)
The Horton-Thorp formula is used for volume attenuation coefficient (Horton, 1959; Thorp, 1965; Fisher and Simmons, 1977)
(17)
b. Sediment.

Sediment sound speed and density were chosen to represent clayey silt (say 8 f, corresponding to a grain diameter of 2−8 mm) (Table VII) (Ainslie, 2010). The sediment density ratio (1.5) and the attenuation per wavelength (0.1 dB) are rounded up from 1.407 and 0.09 dB.

TABLE VII.

Scenario B4: Water and sediment properties. See Fig. 3.

Property Layer thickness/m Density (ρ)/(kg m−3) Sound speed (c)/(m s−1) Attenuation per wavelength (β)
water (0 < z < H 1500  1000  cMz, Eq. (11)  αHTcMz/f [see Eq. (17)
sediment (H < z < H + h 1200  1500  csedz, Eq. (18)  0.1 dB 
half-space (z > H + h   1500  csedH+h  0.1 dB 
Property Layer thickness/m Density (ρ)/(kg m−3) Sound speed (c)/(m s−1) Attenuation per wavelength (β)
water (0 < z < H 1500  1000  cMz, Eq. (11)  αHTcMz/f [see Eq. (17)
sediment (H < z < H + h 1200  1500  csedz, Eq. (18)  0.1 dB 
half-space (z > H + h   1500  csedH+h  0.1 dB 
The sediment sound speed profile follows Hamilton (1985) for deep-sea terrigenous silt-clay1 (Fig. 3),
(18)
where
(19)
and
(20)
FIG. 3.

(Color online) Scenario B4: Sound speed profile. csedH=cMH=1500m/s; csedH+h=2220m/s.

FIG. 3.

(Color online) Scenario B4: Sound speed profile. csedH=cMH=1500m/s; csedH+h=2220m/s.

Close modal

The sediment thickness is chosen to coincide with the maximum of the quadratic, which occurs when zH = 1200 m (i.e., h = 1200 m).

c. Half space.

The substrate is a uniform half space, with density, sound speed, sound speed gradient, and attenuation coefficient all continuous across sediment-half space boundary to minimize reflection (Table VII).

Requested outputs for each source frequency are listed in Table VIII.

TABLE VIII.

Scenario A2: Output quantities.

Output quantity Range / m Depth / m Frequency / Hz Notes
Fp, Fa  0–30 000  10, 20, 100, 1000  10, 100, 1000, 10 000   
Fp  0–30 000  0–3000  100  Two-dimensional (2-D) plot vs range and depth 
Fp  3000  0-3000  10, 100, 1000, 10 000   
Output quantity Range / m Depth / m Frequency / Hz Notes
Fp, Fa  0–30 000  10, 20, 100, 1000  10, 100, 1000, 10 000   
Fp  0–30 000  0–3000  100  Two-dimensional (2-D) plot vs range and depth 
Fp  3000  0-3000  10, 100, 1000, 10 000   

Scenario B1 (scenario id: B1R) involves a single airgun in the same shallow water environment as A1 (depth 50 m, sand seabed). It is based on the S1 airgun source from the International Airgun Modelling Workshop held in Dublin, Ireland on 16 July 2016 (Ainslie , 2019). However, instead of specifying the airgun parameters, the source waveform for B1 is specified. The purpose is to investigate differences in propagation modelling for a fixed (and known) source waveform.

1. Source

The acoustic source is a monopole based on a 2.5 litre airgun (pressure 13.79 MPa) from Ainslie (2019) and defined by the digitised source waveform shown in Fig. 4 (provided as SuppPub1.txt). The source depth is 5 m. Some of the outputs require propagation loss at selected frequencies. These frequencies are 500 and 7000 Hz.

FIG. 4.

(Color online) Scenario B1: Source waveform s(t).

FIG. 4.

(Color online) Scenario B1: Source waveform s(t).

Close modal

2. Propagation medium

The propagation medium is specified in Table V (see also Fig. 1). The water depth is 50 m.

The requested outputs are listed in Table IX (for the sine waves the output quantities are to be provided vs horizontal range (0–50 km) and Table X [for the specified source waveform, s(t)]. See also Fig. 5.

TABLE IX.

Scenario B1: Output quantities for single frequencies (500, 7000 Hz); four curves.

Output quantity Receiver depth / m Receiver range / m
Fp, Fa  15  0-25 000 
Output quantity Receiver depth / m Receiver range / m
Fp, Fa  15  0-25 000 
TABLE X.

Scenario B1: Output quantities for specified source waveform; 13 curves. For scenario B1, time domain quantities are evaluated for the frequency range from 2.8184 Hz to 2.8184 kHz (decidecade bands −25 to +4, inclusive; IEC, 2014).

Output quantity Receiver depth / m Receiver range / m
S(f)  n/a  n/a 
p(t),P(f)  15  30, 3000 
ar(t),Ar(f) 
az(t),Az(f) 
Output quantity Receiver depth / m Receiver range / m
S(f)  n/a  n/a 
p(t),P(f)  15  30, 3000 
ar(t),Ar(f) 
az(t),Az(f) 
FIG. 5.

(Color online) Scenario B1: Source and receiver geometry. Diagram by M. B. Halvorsen.

FIG. 5.

(Color online) Scenario B1: Source and receiver geometry. Diagram by M. B. Halvorsen.

Close modal

Scenario B2 involves a single airgun (2.0 L, 14 MPa) in infinitely deep water. It is closely related to validation scenario b2, for a single airgun and is based on sequence 047 of the 2010 Svein Vaage measurements (Prior , 2021). The measurement geometry is shown in Fig. 6. The purpose of B2 is to provide a stepping stone to b2 in the form of a reference solution for a carefully controlled problem.

FIG. 6.

(Color online) Svein Vaage hydrophone geometry. The airgun coordinates for scenario B2 and B3 are (0, 0, 6) m and (0, ±0.5, 6) m, respectively, at the centre of the near-field hydrophones. Diagram adapted by R. A. J. Müller. Adapted from Prior, M. K., Ainslie, M. A., Halvorsen, M. B., Hartstra, I., Laws, R. M., MacGillivray, A., Müller, R., Robinson, S. and Wang, L. (2021). “Characterization of the acoustic output of single marine-seismic airguns and clusters: The Svein Vaage dataset,” J. Acoust. Soc. Am. 150, 3675–3692. Copyright 2021 Acoustical Society of America.

FIG. 6.

(Color online) Svein Vaage hydrophone geometry. The airgun coordinates for scenario B2 and B3 are (0, 0, 6) m and (0, ±0.5, 6) m, respectively, at the centre of the near-field hydrophones. Diagram adapted by R. A. J. Müller. Adapted from Prior, M. K., Ainslie, M. A., Halvorsen, M. B., Hartstra, I., Laws, R. M., MacGillivray, A., Müller, R., Robinson, S. and Wang, L. (2021). “Characterization of the acoustic output of single marine-seismic airguns and clusters: The Svein Vaage dataset,” J. Acoust. Soc. Am. 150, 3675–3692. Copyright 2021 Acoustical Society of America.

Close modal

1. Source

The source is a single “Bolt 1900LLXT 120” or “Bolt 1900LLX 120” airgun2 at a depth of 6 m (Table XI). For B2, individual modellers are requested to choose between scenarios B2R and B2T and clarify which one was selected by specifying the scenario id as “B2T” for the 1900LLXT airgun model and “B2R” for 1900LLX. When making this choice, they should consider that the LLXT airgun was used in validation scenario b2L, while the LLX was used in b4L.

TABLE XI.

Scenario B2: Single airgun characteristics (Bolt 1900LLXT 120 or 1900LLX 120). The precise value of Pair, of 13 789.515 kPa, is rounded to five significant figures in this and subsequent tables.

Quantity Single airgun (B2)
Airgun chamber volume (Prior , 2021 1.966 L 
Airgun chamber pressure (to five significant figures)  13.790 MPa 
Airgun coordinates  (0, 0, 6) m 
Pulse repetition rate  0.1 Hz 
Water temperature before firing  11 °C 
Quantity Single airgun (B2)
Airgun chamber volume (Prior , 2021 1.966 L 
Airgun chamber pressure (to five significant figures)  13.790 MPa 
Airgun coordinates  (0, 0, 6) m 
Pulse repetition rate  0.1 Hz 
Water temperature before firing  11 °C 

The chamber pressure is approximately 2000 lbf/in2. The total airgun pressure (sum of atmospheric and airgun chamber pressures) is 13 890.840 kPa (approximately 2015 lbf/in2).

The water temperature is specified, but the temperature of the air inside the airgun just before firing is not specified and it is likely to be different. Typically, airgun models include an estimate of the internal air temperature immediately before firing. Some models also include the firing time interval in this estimate of the internal air temperature, which is 10 s, corresponding to the 0.1 Hz repetition rate.

2. Propagation medium

The medium is a uniform isovelocity water with sound speed 1500 m/s and infinite water depth. No seabed parameters are specified or needed.

Requested outputs are listed in Table XII. Scenario B2 uses a 3-D Cartesian coordinate system.

TABLE XII.

Scenario B2: Output quantities.

Output quantity Position / m Notes
s(t), S(f)  n/a  Assume the source waveform, s(t), which excludes contributions from its surface-reflected image (it is not “surface-affected”), is independent of direction.
The source spectrum, S(f), is the Fourier transform of the source waveform. 
p(t), P(f)  (0, 0, 30)  The hydrophone is directly beneath the source, so the x and y components are zero. 
az(t), Az(f)  (0, 0, 100) 
p(t), P(f)  (10.8, −9.8, 5.5)  n/a 
a(t), Af  (10.8, −9.8, 7.5) 
  (10.8, −9.8, 14.5) 
Output quantity Position / m Notes
s(t), S(f)  n/a  Assume the source waveform, s(t), which excludes contributions from its surface-reflected image (it is not “surface-affected”), is independent of direction.
The source spectrum, S(f), is the Fourier transform of the source waveform. 
p(t), P(f)  (0, 0, 30)  The hydrophone is directly beneath the source, so the x and y components are zero. 
az(t), Az(f)  (0, 0, 100) 
p(t), P(f)  (10.8, −9.8, 5.5)  n/a 
a(t), Af  (10.8, −9.8, 7.5) 
  (10.8, −9.8, 14.5) 

Scenario B3 (scenario id: B3R or B3T) involves an airgun cluster (4.1 L, 14 MPa) in infinitely deep water. It is closely related to validation scenario b3, for a cluster of two airguns, with a horizontal separation of 1 m. It is based on sequence 236 of the 2010 Svein Vaage measurements (Prior , 2021). The measurement geometry is shown in Fig. 6. The purpose of B3 is to provide a stepping stone to b3 in the form of a reference solution for a carefully controlled problem. Modellers planning to make predictions for b3 are requested to also provide solutions for B3.

1. Source

The source is a pair of “Bolt 1900LLXT 125” or “Bolt 1900LLX 125” airguns3 at a depth of 6 m (Table XIII). The two airguns are triggered simultaneously. The scenario id is B3T for the 1900LLXT airgun model and B3R for 1900LLX. The corresponding validation scenario (id b3L) is for 1900LLXT.

TABLE XIII.

Scenario B3: airgun cluster characteristics (2 × Bolt 1900LLXT 125 or 2 × Bolt 1900LLX 125).

Quantity cluster (B3)
Airgun chamber volume  2.048 L 
Combined cluster volume  4.096 L 
Airgun chamber pressure (to five significant figures)  13.790 MPa 
Airgun coordinates  (0, ±0.5, 6) m 
Pulse repetition rate  0.1 Hz 
Water temperature before firing  11 °C 
Quantity cluster (B3)
Airgun chamber volume  2.048 L 
Combined cluster volume  4.096 L 
Airgun chamber pressure (to five significant figures)  13.790 MPa 
Airgun coordinates  (0, ±0.5, 6) m 
Pulse repetition rate  0.1 Hz 
Water temperature before firing  11 °C 

2. Propagation medium

The medium is a uniform isovelocity water with sound speed 1500 m/s and infinite water depth. No seabed parameters are specified or needed.

Requested outputs are listed in Table XIV. Scenario B3 uses a 3-D Cartesian coordinate system.

TABLE XIV.

Scenario B3: Requested outputs.

Output quantity Position / m Azimuth ϕ / deg Elevation θ / deg Notes
s(t), S(f)    90  90  The specified azimuth and elevation angles correspond to a direction along the y-axis (endfire direction). The symbol s(t) represents the source waveform, which excludes contributions from its surface-reflected image. Similarly, S(f) represents the source spectrum, defined as the Fourier transform of the source waveform. 
s(t), S(f)    n/a  The specified elevation angle (zero) corresponds to a direction along the z-axis (straight down, broadside). 
p(t), P(f)
az(t), Az(f) 
(0, 0, 30)
(0, 0, 100) 
n/a  n/a  The hydrophone is directly beneath the source, so the x and y components are zero. 
p(t), P(f)
a(t), Af 
(10.8, −9.8, 5.5)
(10.8, −9.8, 7.5)
(10.8, −9.8, 14.5) 
n/a  n/a   
Output quantity Position / m Azimuth ϕ / deg Elevation θ / deg Notes
s(t), S(f)    90  90  The specified azimuth and elevation angles correspond to a direction along the y-axis (endfire direction). The symbol s(t) represents the source waveform, which excludes contributions from its surface-reflected image. Similarly, S(f) represents the source spectrum, defined as the Fourier transform of the source waveform. 
s(t), S(f)    n/a  The specified elevation angle (zero) corresponds to a direction along the z-axis (straight down, broadside). 
p(t), P(f)
az(t), Az(f) 
(0, 0, 30)
(0, 0, 100) 
n/a  n/a  The hydrophone is directly beneath the source, so the x and y components are zero. 
p(t), P(f)
a(t), Af 
(10.8, −9.8, 5.5)
(10.8, −9.8, 7.5)
(10.8, −9.8, 14.5) 
n/a  n/a   

Scenario B4 (scenario id: B4R) involves an airgun array (68 L, 14 MPa) in the same deep water environment as A2 (depth 1500 m, clayey silt seabed). It is closely related to validation scenario b4, which is based on the SCS07 measurements in the Gulf of Mexico (Sidorovskaia and Li, 2022). The purpose of B4 is to provide a stepping stone to b4 in the form of a reference solution for a carefully controlled problem.

1. Source

The source is a horizontal array of 30 Bolt 1900LLX and 1500LL airguns at a depth of 7 m (Tables XV and XVI). All airguns in the array are triggered simultaneously.

TABLE XV.

Scenario B4: SCS07 airgun array characteristics.

Quantity Horizontal array (B4)
Airgun chamber volume  see Table XVI  
Total array volumea  67.839 L 
Airgun chamber pressure (to five significant figures)  13.790 MPa 
Airgun coordinates  see Table XVI  
Pulse repetition rate  0.1 Hz 
Water temperature before firing  16 °C 
Quantity Horizontal array (B4)
Airgun chamber volume  see Table XVI  
Total array volumea  67.839 L 
Airgun chamber pressure (to five significant figures)  13.790 MPa 
Airgun coordinates  see Table XVI  
Pulse repetition rate  0.1 Hz 
Water temperature before firing  16 °C 
a

The airgun array volume, 67.839 L, is approximately 4140 in3.

a. Source characteristics (single pulse).

The SCS07 source array geometry (Fig. 7) is described in Table XVI. The array's origin is at the sea surface, directly above the 1900LLX 120 airgun in the centre sub-array, numbered 17. For this single-pulse scenario, the source array origin coincides with the spatial origin in world coordinates (Cartesian coordinates that are stationary in the Earth's reference frame). This array origin is 1000 m ahead of the receiver.

FIG. 7.

(Color online) Scenario B4: source array geometry. Plan view. The source is towed towards the right in this image. The array volume is 67.839 L (nominally 4140 in3). The numbers between 40 and 350 are the individual airgun volumes in cubic inches.

FIG. 7.

(Color online) Scenario B4: source array geometry. Plan view. The source is towed towards the right in this image. The array volume is 67.839 L (nominally 4140 in3). The numbers between 40 and 350 are the individual airgun volumes in cubic inches.

Close modal
TABLE XVI.

Scenario B4: SCS07 array characteristics. The array origin is at the sea surface, directly above airgun 17.

Airgun ID Airgun type x / m (straight ahead) y / m (starboard) z / m (straight down) Volume/L Notes
Port sub-array 
1900LLX 140  9.00  −5.50  7.00  2.294  Forward port 
1900LLX 140  9.00  −4.50  7.00  2.294   cluster 
1900LLX 120  6.00  −5.50  7.00  1.966   Similar to B3 
1900LLX 120  6.00  −4.50  7.00  1.966   cluster 
1900LLX 100  3.00  −5.50  7.00  1.639    
1900LLX 100  3.00  −4.50  7.00  1.639    
1900LLX 120  0.00  −5.00  7.00  1.966   B2 airgun 
1900LLX 100  −3.00  −5.00  7.00  1.639    
1900LLX 70  −6.00  −5.00  7.00  1.147    
10  1900LLX 40  −9.00  −5.00  7.00  0.655    
Centre sub-array 
11  1500LL 350  9.00  −0.50  7.00  5.735   Forward centre 
12  1500LL 350  9.00  0.50  7.00  5.735   cluster 
13  1900LLX 200  6.00  −0.50  7.00  3.277    
14  1900LLX 200  6.00  0.50  7.00  3.277    
15  1900LLX 155  3.00  −0.50  7.00  2.540   
16  1900LLX 155  3.00  0.50  7.00  2.540   
17  1900LLX 120  0.00  0.00  7.00  1.966   B2 airgun 
18  1900LLX 100  −3.00  0.00  7.00  1.639    
19  1900LLX 80  −6.00  0.00  7.00  1.311   
20  1900LLX 80  −9.00  0.00  7.00  1.311   
starboard sub-array 
21  1500LL 250  9.00  4.50  7.00  4.097  Forward starboard 
22  1500LL 250  9.00  5.50  7.00  4.097   cluster 
23  1900LLX 120  6.00  4.50  7.00  1.966   Similar to B3 
24  1900LLX 120  6.00  5.50  7.00  1.966   cluster 
25  1900LLX 100  3.00  4.50  7.00  1.639    
26  1900LLX 100  3.00  5.50  7.00  1.639    
27  1900LLX 120  0.00  5.00  7.00  1.966   B2 airgun 
28  1900LLX 100  −3.00  5.00  7.00  1.639    
29  1900LLX 70  −6.00  5.00  7.00  1.147    
30  1900LLX 70  −9.00  5.00  7.00  1.147    
        tot. vol.  67.839   
Airgun ID Airgun type x / m (straight ahead) y / m (starboard) z / m (straight down) Volume/L Notes
Port sub-array 
1900LLX 140  9.00  −5.50  7.00  2.294  Forward port 
1900LLX 140  9.00  −4.50  7.00  2.294   cluster 
1900LLX 120  6.00  −5.50  7.00  1.966   Similar to B3 
1900LLX 120  6.00  −4.50  7.00  1.966   cluster 
1900LLX 100  3.00  −5.50  7.00  1.639    
1900LLX 100  3.00  −4.50  7.00  1.639    
1900LLX 120  0.00  −5.00  7.00  1.966   B2 airgun 
1900LLX 100  −3.00  −5.00  7.00  1.639    
1900LLX 70  −6.00  −5.00  7.00  1.147    
10  1900LLX 40  −9.00  −5.00  7.00  0.655    
Centre sub-array 
11  1500LL 350  9.00  −0.50  7.00  5.735   Forward centre 
12  1500LL 350  9.00  0.50  7.00  5.735   cluster 
13  1900LLX 200  6.00  −0.50  7.00  3.277    
14  1900LLX 200  6.00  0.50  7.00  3.277    
15  1900LLX 155  3.00  −0.50  7.00  2.540   
16  1900LLX 155  3.00  0.50  7.00  2.540   
17  1900LLX 120  0.00  0.00  7.00  1.966   B2 airgun 
18  1900LLX 100  −3.00  0.00  7.00  1.639    
19  1900LLX 80  −6.00  0.00  7.00  1.311   
20  1900LLX 80  −9.00  0.00  7.00  1.311   
starboard sub-array 
21  1500LL 250  9.00  4.50  7.00  4.097  Forward starboard 
22  1500LL 250  9.00  5.50  7.00  4.097   cluster 
23  1900LLX 120  6.00  4.50  7.00  1.966   Similar to B3 
24  1900LLX 120  6.00  5.50  7.00  1.966   cluster 
25  1900LLX 100  3.00  4.50  7.00  1.639    
26  1900LLX 100  3.00  5.50  7.00  1.639    
27  1900LLX 120  0.00  5.00  7.00  1.966   B2 airgun 
28  1900LLX 100  −3.00  5.00  7.00  1.639    
29  1900LLX 70  −6.00  5.00  7.00  1.147    
30  1900LLX 70  −9.00  5.00  7.00  1.147    
        tot. vol.  67.839   

Airguns 7, 17, and 27 are the same as the airgun used in scenario B2R (see Sec. VI B 1). In particular, the model (1900LLX), volume, and chamber pressure are all the same. Differences in the source waveform can result from the different source depth and the presence of other airguns in the array.

Seismic airgun arrays can be subject to cavitation in which case they cannot be completely represented by an array of monopoles placed at the positions of the airguns. The sound emitted by the collapsing cavities can have a different effective source position (Landrø , 2011; Christie , 2019). This effect is not considered in the verification scenarios.

Clusters 3–4 and 23–24 are similar to the cluster used in scenario B3. In particular the model (1900LLX), chamber pressure and separation are all the same. Small differences in the source waveform can result from the different volume and source depth and the presence of other airguns in the array.

b. Source characteristics (transit through closest point of approach).

The source is towed past the closest point of approach (CPA) with a constant velocity and the following track characteristics:

  • horizontal distance to receiver at CPA = 1 km

  • receiver direction at CPA = starboard

  • Tow speed v = 2.5 m/s

  • Pulse repetition rate fR = 0.1 Hz

Used only for cumulative sound exposure (see Table XIX).

2. Propagation medium

The propagation medium is the deep water environment of Scenario A2. It is also the same environment as for the LF MBES source (Scenario C1).

For scenario B4, there are three kinds of output: source properties, sound field for a single pulse, and sound exposure and peak sound pressure for a CPA transit.

1. Source properties

Requested source properties are listed in Table XVII. These are

  • source waveform st and source spectrum Sf,

  • surface-affected source waveform st and surface-affected source spectrum Sf.

TABLE XVII.

Scenario B4: Source properties.

Output quantity θ / deg ϕ / deg Notes
s(t), S(f)  90  The specified azimuth and elevation angles correspond to the forward endfire direction. The symbol s(t) represents the source waveform, which excludes contributions from its surface-reflected image. Similarly, S(f) represents the source spectrum, the Fourier transform of the source waveform. 
s(t), S(f)  n/a  The specified elevation angle corresponds to the straight down direction. 
s(t), S(f)  90  90  The specified azimuth and elevation angles correspond to the starboard broadside direction. 
s(t), S(f)  n/a  The specified elevation angle corresponds to the straight down direction. The symbol s(t) represents the surface affected source waveform, which includes contributions from its surface-reflected image. Similarly, S(f) represents the surface-affected source spectrum, the Fourier transform of the surface-affected source waveform. 
s(t), S(f)  45  135  The specified azimuth and elevation angles correspond to a direction 45 deg abaft the starboard broadside and 45 deg up from the downward vertical. The symbol s(t) represents the surface affected source waveform, which includes contributions from its surface-reflected image. Similarly, S(f) represents the surface-affected source spectrum, the Fourier transform of the surface-affected source waveform. 
Output quantity θ / deg ϕ / deg Notes
s(t), S(f)  90  The specified azimuth and elevation angles correspond to the forward endfire direction. The symbol s(t) represents the source waveform, which excludes contributions from its surface-reflected image. Similarly, S(f) represents the source spectrum, the Fourier transform of the source waveform. 
s(t), S(f)  n/a  The specified elevation angle corresponds to the straight down direction. 
s(t), S(f)  90  90  The specified azimuth and elevation angles correspond to the starboard broadside direction. 
s(t), S(f)  n/a  The specified elevation angle corresponds to the straight down direction. The symbol s(t) represents the surface affected source waveform, which includes contributions from its surface-reflected image. Similarly, S(f) represents the surface-affected source spectrum, the Fourier transform of the surface-affected source waveform. 
s(t), S(f)  45  135  The specified azimuth and elevation angles correspond to a direction 45 deg abaft the starboard broadside and 45 deg up from the downward vertical. The symbol s(t) represents the surface affected source waveform, which includes contributions from its surface-reflected image. Similarly, S(f) represents the surface-affected source spectrum, the Fourier transform of the surface-affected source waveform. 

At low frequency (wavelength exceeding source array dimensions), the B4 source waveform depends on the direction.

2. Sound field for a single pulse

Requested outputs are listed in Table XVIII.

TABLE XVIII.

Scenario B4: Sound field properties of source array, to be evaluated for a single pulse.

Output quantity Position / m
p(t), P(f)
a(t), |Af|, Ep,ddecf 
(−1000, +1000, +1000) 
Output quantity Position / m
p(t), P(f)
a(t), |Af|, Ep,ddecf 
(−1000, +1000, +1000) 

3. Sound exposure and peak sound pressure for a CPA transit

In world coordinates, the receiver is at (−1000, 1000, 1000) m and the array moves along the x-axis towards plus infinity at speed V. Airgun 17, at (0, 0, 7) m in array coordinates (see Table XVI), represents the array position. In world coordinates, the position of airgun 17, is (xn, 0, 7 m), where
(21)
Requested outputs are listed in Table XIX. Values for n = 0 are for the same geometry as for the single pulse (Table XVIII). Bands SV and BD are described in Table XXI. The subscripts LF and VHF indicate weighting functions (Table XX).
TABLE XIX.

Scenario B4: Transit properties. For scenario B4, unweighted broadband quantities are evaluated for the frequency bands SV or BD as indicated (see Table XXI). No frequency band is specified for LF- or VHF- weighted quantities (Table XX); modellers are invited to select an appropriate frequency range to achieve a converged solution.

Output quantity Source position / m Receiver position / m Temporal averaging window Notes
Ep,SV, ppk,SV
Ea,BD, apk,BD
Ep,LF, Ep,VHF 
(0, 0, 7)  (−1000, 1000, 1000)  One pulse (from minus infinity to plus infinity)  Plot quantity vs the source position along the x-axis. Frequency bands and weighting functions are specified in Sec. VIII D. An alternative receiver depth of 100 m (instead of 1000 m) may be considered.
The purpose of including the frequency-weighted quantities is to verify a model's ability to estimate the risk of hearing threshold shift using the criteria of (Southall , 2019). 
Ep,LF,cum, maxppk,SV  (xn/m, 0, 7)  (−1000, 1000, 1000)  duration of transit (ca. 800 s)  Outputs correspond to a complete transit past the CPA position, with sound exposure summed over all pings.
An alternative receiver depth of 100 m (instead of 1000 m) may be considered. 
Output quantity Source position / m Receiver position / m Temporal averaging window Notes
Ep,SV, ppk,SV
Ea,BD, apk,BD
Ep,LF, Ep,VHF 
(0, 0, 7)  (−1000, 1000, 1000)  One pulse (from minus infinity to plus infinity)  Plot quantity vs the source position along the x-axis. Frequency bands and weighting functions are specified in Sec. VIII D. An alternative receiver depth of 100 m (instead of 1000 m) may be considered.
The purpose of including the frequency-weighted quantities is to verify a model's ability to estimate the risk of hearing threshold shift using the criteria of (Southall , 2019). 
Ep,LF,cum, maxppk,SV  (xn/m, 0, 7)  (−1000, 1000, 1000)  duration of transit (ca. 800 s)  Outputs correspond to a complete transit past the CPA position, with sound exposure summed over all pings.
An alternative receiver depth of 100 m (instead of 1000 m) may be considered. 
TABLE XX.

Parameters for auditory frequency weighting functions. The frequency ν [see Eq. (27)] is the value of f that maximises waudf. Data from Southall (2019), except ν, from Ainslie (2021).

marine mammal hearing group flo / kHz fhi / kHz a b ν / kHz
LF cetaceans  0.2  19  1.0  2.0  1.64 
VHF cetaceans  12.0  140  1.8  2.0  39.83 
marine mammal hearing group flo / kHz fhi / kHz a b ν / kHz
LF cetaceans  0.2  19  1.0  2.0  1.64 
VHF cetaceans  12.0  140  1.8  2.0  39.83 
The cumulative sound exposure is
(22)

1. Weighted sound exposure

Weighted sound exposure (ISO, 2017) is
(23)
where w(f) is a frequency weighting function [ISO 18405:2017 (ISO, 2017)],
(24)
and Pf is the sound pressure spectrum (Table I). The function w(f) can be an auditory frequency weighting function but does not need to be. It can be determined from any filter. For example, a rectangular weighting function, corresponding to a bandpass filter, is considered in Sec. VIII D 3.

2. Auditory frequency weighting functions

Using the auditory frequency weighting function [ISO 18405:2017 (ISO, 2017)], the weighted sound exposure is
(25)
The auditory frequency weighting function is
(26)
where flo and fhi are the higher and lower auditory roll-off frequencies and ν is the frequency of peak response, such that wν=1. Table XIX specifies LF and VHF weighting, as do Table XXVII and Table XXXI). The Finneran weighting function (Finneran, 2016; Southall , 2019) has the functional form of Eq. (26), with (Ainslie , 2021)
(27)
where
(28)
is a small dimensionless parameter (less than 0.005 for LF and VHF weighting functions, Table XX). Plotted in Fig. 8. Logarithmic auditory frequency weighting function (Fig. 8) is
(29)
FIG. 8.

(Color online) Auditory frequency weighting functions for LF and VHF cetaceans and (b): The y-axis spans 20 dB (−20 dB to 0 dB) in the corresponding logarithmic weighting function, Waud.

FIG. 8.

(Color online) Auditory frequency weighting functions for LF and VHF cetaceans and (b): The y-axis spans 20 dB (−20 dB to 0 dB) in the corresponding logarithmic weighting function, Waud.

Close modal

3. Rectangular frequency weighting functions

The frequency weighting does not have to be auditory. For example, one can use a rectangular weighting function, corresponding to a bandpass filter,
(30)
where wΠ is the rectangular weighting function,
(31)
where Πx is the rectangle function, equal to 1 inside the range −1/2 to +1/2 and zero outside that range
(32)
such that
(33)
Values of the edge frequencies fmin and fmax to be used for rectangular weighting are specified in Table XXI.
TABLE XXI.

Frequency bands, correcting typographical errors in Table II of Prior (2021).

band fmin / Hz fmax / Hz nmin nmax Notes
SV1  2.8184  28 184  −25  +14  This four-decade band comprising decidecade bands −25 to +14 is referred to here as band “SV1” and by Prior (2021) as band “SV.”a Here, “SV” can refer to SV1 or SV2. 
SV2  2.8184  2818.4  −25  +4  This three-decade band comprising decidecade bands −25 to +4 is referred to here as band “SV2.” The unqualified “SV” can refer to SV1 or SV2. 
BD  8.9125  8912.5  −20  +9  This three-decade band comprising decidecade bands −20 to +9 is referred to as band “BD” (Ainslie , 2018; Prior , 2021). ADEON band BD is the preferred frequency band for sound particle acceleration. 
band fmin / Hz fmax / Hz nmin nmax Notes
SV1  2.8184  28 184  −25  +14  This four-decade band comprising decidecade bands −25 to +14 is referred to here as band “SV1” and by Prior (2021) as band “SV.”a Here, “SV” can refer to SV1 or SV2. 
SV2  2.8184  2818.4  −25  +4  This three-decade band comprising decidecade bands −25 to +4 is referred to here as band “SV2.” The unqualified “SV” can refer to SV1 or SV2. 
BD  8.9125  8912.5  −20  +9  This three-decade band comprising decidecade bands −20 to +9 is referred to as band “BD” (Ainslie , 2018; Prior , 2021). ADEON band BD is the preferred frequency band for sound particle acceleration. 
a

The frequency range of band SV1 (decidecade bands −25 to +14, inclusive) is stated by Prior (2021) as “28.184 Hz” to “28.184 Hz.” The correct frequency range for SV1 is 2.8184 Hz to 28.184 kHz.

TABLE XXII.

Scenario C1: LF MBES source characteristics for a single pulse. Steer angles are relative to vertical. Based on MBES#3 (nominal frequency 12 kHz).

Source property Value Notes
Source depth  7 m   
Pulse duration  20 ms   
Number of piston transducers in along-track direction (N 125  The number of piston transducers combined with the transducer spacing determines along-track beam width. In the along-track direction, the full width at half maximum (fwhm) is approximately 1°. 
Number of piston transducers in across-track direction (M The number of piston transducers combined with the transducer spacing determines across-track beam width. In the along-track direction, the fwhm is approximately 15° at broadside. 
Piston diameter (d 0.0556 m   
Source factor of centre piston (S0,0 100011252kPa2m2   
Transducer spacing  0.0556 m  The transducer spacing is the distance between the centres of neighbouring pistons, corresponding approximately to half-wavelength spacing at 13.6 kHz (the spatial repetition rate is about 18 m−1). 
Along-track steer angle  0°  This value of along-track steer angle corresponds to a zero phase delay in the source waveform. 
Across-track steer angle  −55°, −30°, −14°, 0°, 14°, 30°, 55°  These values of along-track steer angle correspond to a non-zero phase delay or time delay in the source waveform.
Scenario C1 focuses on beams steered to starboard, including the vertical beam. Port-steered beams contribute little to the starboard field and are shaded. 
Pulse centre frequency (fc) / kHz  10.5, 11.5, 12.5, 13.5, 13.0, 12.0, 11.0  These values of pulse centre frequency are for use in Eq. (34). Each pulse has a slightly different centre frequency, between 10.5 and 13.5 kHz. Scenario C1 focuses on beams steered to starboard, including the vertical beam. Port-steered beams contribute little to the starboard field and are shaded. 
Dolph-Chebyshev weighting parameter (γ 1.5  The value γ =1.5 corresponds to a sidelobe level of -30 dB. The parameter γ is denoted α by (Harris, 1978). 
Source property Value Notes
Source depth  7 m   
Pulse duration  20 ms   
Number of piston transducers in along-track direction (N 125  The number of piston transducers combined with the transducer spacing determines along-track beam width. In the along-track direction, the full width at half maximum (fwhm) is approximately 1°. 
Number of piston transducers in across-track direction (M The number of piston transducers combined with the transducer spacing determines across-track beam width. In the along-track direction, the fwhm is approximately 15° at broadside. 
Piston diameter (d 0.0556 m   
Source factor of centre piston (S0,0 100011252kPa2m2   
Transducer spacing  0.0556 m  The transducer spacing is the distance between the centres of neighbouring pistons, corresponding approximately to half-wavelength spacing at 13.6 kHz (the spatial repetition rate is about 18 m−1). 
Along-track steer angle  0°  This value of along-track steer angle corresponds to a zero phase delay in the source waveform. 
Across-track steer angle  −55°, −30°, −14°, 0°, 14°, 30°, 55°  These values of along-track steer angle correspond to a non-zero phase delay or time delay in the source waveform.
Scenario C1 focuses on beams steered to starboard, including the vertical beam. Port-steered beams contribute little to the starboard field and are shaded. 
Pulse centre frequency (fc) / kHz  10.5, 11.5, 12.5, 13.5, 13.0, 12.0, 11.0  These values of pulse centre frequency are for use in Eq. (34). Each pulse has a slightly different centre frequency, between 10.5 and 13.5 kHz. Scenario C1 focuses on beams steered to starboard, including the vertical beam. Port-steered beams contribute little to the starboard field and are shaded. 
Dolph-Chebyshev weighting parameter (γ 1.5  The value γ =1.5 corresponds to a sidelobe level of -30 dB. The parameter γ is denoted α by (Harris, 1978). 
TABLE XXIII.

Scenario C1: LF MBES source characteristics for a pulse sequence and multiple pulse sequences at 12 kHz.

Source property Value Notes
Pulse repetition rate  40 Hz  A sequence of seven pulses (known as a ping) is transmitted in quick succession, each of 20 ms duration and with a 5 ms gap between the individual pulses. The pulse repetition rate is 1/(25 ms) = 40 Hz. 
Number of pulses per ping  A ping comprises one pulse in each of seven steer directions (see Table XXII). The total duration of one ping is 170 ms = 140 ms (seven pulses) + 30 ms (six gaps between pulses). 
Ping repetition rate (fR 0.1 Hz  The gap between the end of one ping and the start of the next is 9830 ms = 10 s–170 ms. This repetition rate is intended to approximately reproduce the cumulative sound exposure level graphs from Lurton (2016). It is not intended to be a realistic rate for a real survey in 1500 m water depth. 
Ship speed (V 4 m/s  Lurton (2016) specified a slightly higher ship speed, of 4.12 m/s (8 kn). 
Source property Value Notes
Pulse repetition rate  40 Hz  A sequence of seven pulses (known as a ping) is transmitted in quick succession, each of 20 ms duration and with a 5 ms gap between the individual pulses. The pulse repetition rate is 1/(25 ms) = 40 Hz. 
Number of pulses per ping  A ping comprises one pulse in each of seven steer directions (see Table XXII). The total duration of one ping is 170 ms = 140 ms (seven pulses) + 30 ms (six gaps between pulses). 
Ping repetition rate (fR 0.1 Hz  The gap between the end of one ping and the start of the next is 9830 ms = 10 s–170 ms. This repetition rate is intended to approximately reproduce the cumulative sound exposure level graphs from Lurton (2016). It is not intended to be a realistic rate for a real survey in 1500 m water depth. 
Ship speed (V 4 m/s  Lurton (2016) specified a slightly higher ship speed, of 4.12 m/s (8 kn). 

Scenario C1 (scenario id: C1R) involves a multi-beam echo sounder (125 piston transducers, 12 kHz) in the same deep water environment as A2 (depth 1500 m, clayey silt seabed). It is based on the MBES#3 modelling by Lurton (2016) and is illustrated in Fig. 9. The main differences are:

  • the deep water (Munk) sound speed profile is adopted here, from Scenarios A2, B4; and

  • the water depth is 1500 m to correspond to Scenarios A2, B4.

FIG. 9.

A typical LF MBES geometry, with narrow beams (∼1°) in the along-track direction and broad beams in the cross-track direction. The diagram of the LF MBES geometry is reproduced from Fig. 1 from Lurton (2016). “Modelling of the sound field radiated by multibeam echosounders for acoustical impact assessment,” Appl. Acoust. 101, 201–221; licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

FIG. 9.

A typical LF MBES geometry, with narrow beams (∼1°) in the along-track direction and broad beams in the cross-track direction. The diagram of the LF MBES geometry is reproduced from Fig. 1 from Lurton (2016). “Modelling of the sound field radiated by multibeam echosounders for acoustical impact assessment,” Appl. Acoust. 101, 201–221; licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Close modal

1. Source

a. General source characteristics.

The transmitter, a two-dimensional (2-D) discrete array of circular piston transducers, approximately 7 m long and 50 cm wide, is based on Lurton's MBES#3 (Lurton, 2016). This source transmits a sequence of seven 20 ms pulses in rapid succession, followed by a gap of about 10 s before the next pulse sequence (each sequence of seven pulses is referred to as a “ping”). Dolph-Chebyshev weighting is used in space, with Hann weighting in time. See Tables XXII and XXIII for details.

b. Temporal weighting (Hann weighting).
The source waveform is a Hann-weighted sinusoidal wave
(34)
The source factor Sn,m of individual elements depends on the spatial weighting
(35)
where
(36)
and
(37)
c. Spatial weighting (Dolph-Chebyshev).
The spatial weighting function is
(38)
with
(39)
The weighting function with Dolph-Chebyshev weighting (Fig. 10) is (Antoniou, 2000)
(40)
where
(41)
(42)
and
(43)
The spatial weighting function is normalized by means of Eq. (40). Example outputs for Dolph-Chebyshev window terms n = 0, 30, 62 are given in Table XXIV.
FIG. 10.

(Color online) (a) Plot of the along-track window defined in scenario C1 using the Antoniou formula [see Eqs. (40)–(43)]. (b) The fast Fourier transform (FFT) of the window showing the resultant spatial sampling frequency of the window. Window was zero-padded up to 2048 terms. Note the 30 dB separation between sidelobes and mainlobe.

FIG. 10.

(Color online) (a) Plot of the along-track window defined in scenario C1 using the Antoniou formula [see Eqs. (40)–(43)]. (b) The fast Fourier transform (FFT) of the window showing the resultant spatial sampling frequency of the window. Window was zero-padded up to 2048 terms. Note the 30 dB separation between sidelobes and mainlobe.

Close modal
TABLE XXIV.

Example weighting term results for a Chebyshev window with N = 125 terms and a sidelobe reduction level of 30 dB (γ=1.5). Results rounded to four decimal places. The index n ranges from (N1)/2 to (N1)/2.

n wn(125,1.5)
1.0000 
30  0.7146 
62  1.4372 
n wn(125,1.5)
1.0000 
30  0.7146 
62  1.4372 

2. Propagation medium

The propagation medium is the deep water environment of Scenario A2. It is also the same environment as for the airgun array (Scenario B4). A transiting source is considered (Fig. 11).

FIG. 11.

(Color online) Scenario C1: CPA transit outputs.

FIG. 11.

(Color online) Scenario C1: CPA transit outputs.

Close modal

1. Beam pattern and source level

Requested source outputs are listed in Table XXV.

TABLE XXV.

Scenario C1: Source properties.

Output quantity Notes
wn,m  spatial weighting 
Dθ=,θX  transmitter beam pattern, scaled to maximum of unity (Fig. 13
source factor or source level at the centre of the main beam  The source factor of an unweighted array of 1125 identical elements, with Eq. (36) for S0,0, would be 1 MPa2 m2, and the corresponding source level (re 1 μPa2 m2) would be 240 dB.
The weighted array is expected to have a lower SL value 
Output quantity Notes
wn,m  spatial weighting 
Dθ=,θX  transmitter beam pattern, scaled to maximum of unity (Fig. 13
source factor or source level at the centre of the main beam  The source factor of an unweighted array of 1125 identical elements, with Eq. (36) for S0,0, would be 1 MPa2 m2, and the corresponding source level (re 1 μPa2 m2) would be 240 dB.
The weighted array is expected to have a lower SL value 
The beam pattern of a circular piston transducer (Fig. 12) is (Tucker and Gazey, 1966, p. 180ff)
(44)
where
(45)
FIG. 12.

(Color online) Scenario C1: Piston transducer beam pattern, 10log10Du, see Eq. (44).

FIG. 12.

(Color online) Scenario C1: Piston transducer beam pattern, 10log10Du, see Eq. (44).

Close modal
FIG. 13.

(Color online) Scenario C1: Single pulse beam patterns (Dolph-Chebyshev weighting). (a) along track 10log10Dθ=,0. (b) across track 10log10D0,θX for each sector, steering angle given in Table XXII. Compare Lurton (2016) Figs. 5 and 6.

FIG. 13.

(Color online) Scenario C1: Single pulse beam patterns (Dolph-Chebyshev weighting). (a) along track 10log10Dθ=,0. (b) across track 10log10D0,θX for each sector, steering angle given in Table XXII. Compare Lurton (2016) Figs. 5 and 6.

Close modal

2. Sound pressure metrics for CPA transit

A 12-km track line is specified:
(46)
For scenario C1, three kinds of output are requested: peak sound pressure (Table XXVI); mean square sound pressure (Tables XXVI and XXVII); and sound exposure (Table XXVII).
TABLE XXVI.

Scenario C1: Peak sound pressure and maximum mean square sound pressure. Often, the maximum mean square sound pressure occurs during the first arrival. For scenario C1, unweighted broadband quantities are evaluated for the frequency band SV1 (see Table XXI).

Output quantity Source position/m Horizontal range/m Bearing/deg z / m Temporal observation windowa / ms Notes
max p2¯  (0, 0, 7)  0–10 000  90  20, 1000  20  At CPA (starboard broadside) 
max p2¯  (0, 0, 7)  0–10 000  45  20, 1000  20  Bearing 45 deg 
max p2¯  (0, 0, 7)  0–10 000  20, 1000  20  Endfire 
max p2¯  (0, 0, 7)  3000  0–1500  20  Endfire (a shadow is expected above ∼100 m) 
ppk  (0, 0, 7)  0–10 000  90  20, 1000    At CPA 
ppk  (0, 0, 7)  3000  0–1500    Endfire 
Output quantity Source position/m Horizontal range/m Bearing/deg z / m Temporal observation windowa / ms Notes
max p2¯  (0, 0, 7)  0–10 000  90  20, 1000  20  At CPA (starboard broadside) 
max p2¯  (0, 0, 7)  0–10 000  45  20, 1000  20  Bearing 45 deg 
max p2¯  (0, 0, 7)  0–10 000  20, 1000  20  Endfire 
max p2¯  (0, 0, 7)  3000  0–1500  20  Endfire (a shadow is expected above ∼100 m) 
ppk  (0, 0, 7)  0–10 000  90  20, 1000    At CPA 
ppk  (0, 0, 7)  3000  0–1500    Endfire 
a

Temporary observation window is defined by Ainslie (2020).

TABLE XXVII.

Scenario C1: Sound exposure and maximum mean square sound pressure. Often, the maximum mean square sound pressure occurs during the first arrival. For scenario C1, unweighted broadband quantities are evaluated for the frequency band SV1 (see Table XXI). No frequency band is specified for LF- or VHF- weighted quantities (Table XX); modellers are invited to select an appropriate frequency range to achieve a converged solution.

Output quantity Source position / m x / m y / m z / m Temporal observation window / s Notes
Ep, Ep,LF, Ep,VHF  (xt, 0, 7)  0–10 000  20, 1000  3000  Cumulative sound exposure for 3000 s transit past CPA (3 values for each receiver position) 
max p2¯  (xt, 0, 7)  3000  20, 1000  0.02  CPA transit, unweighted (two values for each source position x). 
Ep, Ep,LF, Ep,VHF  (xt, 0, 7)  3000  0–1500  3000  Cumulative sound exposure for 3000 s transit past CPA (3 values for each receiver position) 
Output quantity Source position / m x / m y / m z / m Temporal observation window / s Notes
Ep, Ep,LF, Ep,VHF  (xt, 0, 7)  0–10 000  20, 1000  3000  Cumulative sound exposure for 3000 s transit past CPA (3 values for each receiver position) 
max p2¯  (xt, 0, 7)  3000  20, 1000  0.02  CPA transit, unweighted (two values for each source position x). 
Ep, Ep,LF, Ep,VHF  (xt, 0, 7)  3000  0–1500  3000  Cumulative sound exposure for 3000 s transit past CPA (3 values for each receiver position) 

The receiver at 1000 m depth is in the far field of the transducer. The receiver at 20 m depth is in the near field when close to or directly beneath the echosounder. The purpose of requesting both depths is to test predictions in both near field and far field.

Scenario D1 (scenario id: D1R) involves a surface vessel (bulk carrier, length 200 m) in intermediate water depth (depth 192 m, sand seabed). It is based on the transit of a bulk carrier vessel close to the Port of Vancouver. It is closely related to validation scenario d1, which is based on ECHO measurements close to the Port of Vancouver. The purpose of D1 is to provide a stepping stone to d1 in the form of a reference solution for a carefully controlled problem. Modellers planning to make predictions for d1 are requested to also provide solutions for D1.

1. Source

The surface vessel is modelled as a point source at depth 6 m.

The source spectral density level for a bulk carrier is calculated from ship speed v and length l using (MacGillivray and de Jong, 2021)
(47)
and L0,n is the reference spectrum given as a function of the decidecade band centre frequency fn
(48)
where
(49)
(50)
(51)
and
(52)
Also, plotted (Fig. 14) is a high-frequency (HF) asymptotic spectrum for ϕhi = 1 Hz, i.e.,
(53)
The source spectrum for scenario C1 (Fig. 14, Table XXVIII) is for a bulk carrier of length 200 m and speed 7 m/s.
FIG. 14.

(Color online) Scenario D1. (a) Source spectral density level (dB) vs band centre frequency (Hz) using Eq. (47) (solid blue curve); high frequency reference from Eq. (53) (dashed red line); (b) relative source level [difference between source spectral density level and high-frequency reference from Fig. 14(a)]. The range of centre frequencies is from 8 Hz to 80 kHz, which deliberately exceeds the validity of the SL model; the purpose of doing so is to test the models' ability to calculate LF and VHF weighted properties, and thus their ability to model propagation for the frequency range relevant to marine mammal hearing.

FIG. 14.

(Color online) Scenario D1. (a) Source spectral density level (dB) vs band centre frequency (Hz) using Eq. (47) (solid blue curve); high frequency reference from Eq. (53) (dashed red line); (b) relative source level [difference between source spectral density level and high-frequency reference from Fig. 14(a)]. The range of centre frequencies is from 8 Hz to 80 kHz, which deliberately exceeds the validity of the SL model; the purpose of doing so is to test the models' ability to calculate LF and VHF weighted properties, and thus their ability to model propagation for the frequency range relevant to marine mammal hearing.

Close modal
TABLE XXVIII.

Scenario D1: Bulker vessel source spectral density level, from Fig. 14.

Decidecade band index n Band centre frequencya (fn) / Hz Source spectral density levelb (re 1 μPa2 m2/Hz) / dB
−21  7.9433  155.87 
−20  10.000  156.97 
−19  12.589  158.14 
⋯     
−11  79.433  159.82 
−10  100.00  155.48 
−9  125.89  154.44 
⋯     
−1  794.33  139.55 
1000.0  137.50 
1258.9  135.45 
⋯     
7943.3  119.28 
10  10 000  117.27 
11  12 589  115.27 
⋯     
19  79 433  99.25 
Decidecade band index n Band centre frequencya (fn) / Hz Source spectral density levelb (re 1 μPa2 m2/Hz) / dB
−21  7.9433  155.87 
−20  10.000  156.97 
−19  12.589  158.14 
⋯     
−11  79.433  159.82 
−10  100.00  155.48 
−9  125.89  154.44 
⋯     
−1  794.33  139.55 
1000.0  137.50 
1258.9  135.45 
⋯     
7943.3  119.28 
10  10 000  117.27 
11  12 589  115.27 
⋯     
19  79 433  99.25 
a

Rounded to five significant figures.

b

Rounded to two decimal places.

Equation (47) is evaluated at decidecade centre frequencies, leading to Table XXVIII. The spectral density level at intermediate frequencies (i.e., between successive decidecade band centre frequencies) is obtained by linear interpolation in logarithmic frequency space, i.e.,
(54)

2. Propagation medium

Assume isothermal profile. Use sand seabed with the same properties as A1 (see Tables V and XXIX).

TABLE XXIX.

Scenario D1: Water and sediment properties. The seawater sound speed at the seabed is 1500 m/s.

Property Layer thickness / m Density (ρ) / (kg m−3) Sound speed (c) / (m s−1) Attenuation per wavelength (β)
Water  192  1000  1496.8+160zm  αHTcz/f [See Eq. (17)
Sediment    2000  1700  0.5 dB 
Property Layer thickness / m Density (ρ) / (kg m−3) Sound speed (c) / (m s−1) Attenuation per wavelength (β)
Water  192  1000  1496.8+160zm  αHTcz/f [See Eq. (17)
Sediment    2000  1700  0.5 dB 

For scenario D1, there are three kinds of output:

  • propagation factor vs range (receiver depth 190 m; selected frequencies);

  • mean-square sound pressure spectrum + mean-square weighted sound pressure at CPA; and

  • sound exposure spectrum + weighted sound exposure for vessel transit.

1. Propagation factor vs range

Requested outputs are listed in Table XXX.

TABLE XXX.

Scenario D1: propagation loss for a monopole source. The source depth is 6 m.

Output quantity Range / m Depth / m Notes
Fp, Fa  0–3.5 km  190 m  Output quantities are to be evaluated at three frequencies of 10, 300, and 10 000 Hz. 
Output quantity Range / m Depth / m Notes
Fp, Fa  0–3.5 km  190 m  Output quantities are to be evaluated at three frequencies of 10, 300, and 10 000 Hz. 

2. Sound pressure metrics for CPA transit

The source position varies with time according to
(55)
with t=0 corresponding to CPA.

Requested outputs are listed in Table XXXI. The subscripts “LF” and “VHF” indicate frequency weighting according to the LF and VHF weighting functions from Southall (2019). See Table XX. Auditory frequency weighting functions are specified in Sec. VIII D 2.

TABLE XXXI.

Scenario D1: Outputs.

Output quantity Source position / m Receiver position / m Temporal observation window Notes
p2¯ddecf, p2¯LF, p2¯VHF  (0, 0, 6)  (0, 500, 190)  1 s  At CPA decidecade bands −21 to +19 
Ep,ddecf, Ep,LF, Ep,VHF  (xt, 0, 6)  (0, 500, 190)  1000 s  CPA transit decidecade bands −21 to +19 
Output quantity Source position / m Receiver position / m Temporal observation window Notes
p2¯ddecf, p2¯LF, p2¯VHF  (0, 0, 6)  (0, 500, 190)  1 s  At CPA decidecade bands −21 to +19 
Ep,ddecf, Ep,LF, Ep,VHF  (xt, 0, 6)  (0, 500, 190)  1000 s  CPA transit decidecade bands −21 to +19 

Some closing remarks follow about the complexity of the scenarios.

The scenarios described herein are for verification (comparison between models) rather than for validation (comparison of models with measurements). Nevertheless, the scenarios have been chosen to be closely related to situations for which measurements exist (Ainslie , 2024).

From the perspective of modelling the source, the scenarios range from a trivial point source (A1, A2, B1, and D1) to weighted 2-D arrays (B4 and C1). Similarly, the propagation conditions range from spherical spreading with a single reflecting boundary (B2 and B3) to a Pekeris waveguide (A1) or deep water Munk profile (A2, B4, C1). Future improvements could usefully include layering in the seabed (A1, B1) and range-dependent bathymetry (A2, B4, C1).

See the supplementary material for the digitised source waveform, ‘SuppPub1.txt’ (original file name “AgoraNotionalS1G1Sertlek20160627121902.txt” from Sertlek et al. (2019) http://dx.doi.org/10.21227/5081-yr65, is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, http://creativecommons.org/licenses/by/4.0/.

The authors thank Dr. Peter H. Dahl, Dr. Christ A. F. de Jong, Dr. Mike B. Porter, Dr. Mark K. Prior, Dr. Natalia A. Sidorovskaia, and two anonymous reviewers for their comments on earlier versions of this manuscript. The JAM Workshop was supported by the E&P Sound and Marine Life Joint Industry Programme, Contract No. JIP22 III-17-01.

The authors have no conflicts to disclose.

This paper describes verification scenarios and is self-contained (see also supplementary material).

1
Hamilton's original equation for deep-sea terrigenous silt-clay is
In Eqs. (18)–(20), the coefficients are rounded for simplicity.
2

The “120” in the name indicates a nominal airgun volume of 120 cubic inches. The precise airgun volume (1.966 L) is approximately equal to 120.0 in3.

3

The “125” In the name indicates a nominal airgun volume of 125 cubic inches. The precise airgun volume (2.048 L) is approximately 125.0 in3. The cluster volume (4.096 L) is approximately 250.0 in3.

1.
Ainslie
,
M. A.
(
2010
).
Principles of Sonar Performance Modeling
(
Springer
,
Berlin
).
2.
Ainslie
,
M. A.
,
de Jong
,
C. A. F.
,
Martin
,
S. B.
,
Miksis-Olds
,
J. L.
,
Warren
,
J. D.
,
Heaney
,
K. D.
,
Hillis
,
C. A.
, and
MacGillivray
,
A. O.
(
2020
). “
ADEON Project Dictionary: Terminology Standard
,” Technical report by JASCO Applied Sciences for ADEON (
JASCO
,
Halifax, Canada
).
3.
Ainslie
,
M. A.
,
Halvorsen
,
M. B.
,
Labak
,
S.
,
Li
,
Z.
, and
Lucke
,
K.
(
2023
). “
JIP Acoustic Modelling (JAM) Workshop: Workshop Report. Document 02923, Version 2.1
,” Technical Report by JASCO Applied Sciences for E&P Sound and Marine Life Joint Industry Programme. This report will be made available after publication of this J. Acoust. Soc. Am. special issue on Verification and Validation of Source and Propagation Models for Underwater Sound (
JASCO Applied Sciences USA
,
Silver Spring, MD
).
4.
Ainslie
,
M. A.
,
Halvorsen
,
M. B.
, and
Robinson
,
S. P.
(
2021
). “
A terminology standard for underwater acoustics and the benefits of international standardization
,”
IEEE J. Oceanic Eng.
47
,
179
200
.
5.
Ainslie
,
M. A.
,
Laws
,
R. M.
,
Li
,
Z.
,
Muller
,
R. A. J.
, and
Sidorovskaia
,
N. A.
(
2024
). “
Source and modelling scenarios for environmental impact assessment: Validation
,” Technical Report by JASCO Applied Sciences for International Association of Oil and Gas Producers (
JASCO
,
Halifax, Canada
).
6.
Ainslie
,
M. A.
,
Laws
,
R. M.
, and
Sertlek
,
H. Ö.
(
2019
). “
International airgun modeling workshop: Validation of source signature and sound propagation models—Dublin (Ireland), July 16, 2016—Problem description
,”
IEEE J. Oceanic Eng.
44
,
565
574
.
7.
Ainslie
,
M. A.
,
Miksis-Olds
,
J. L.
,
Martin
,
S. B.
,
Heaney
,
K. D.
,
de Jong
,
C. A. F.
,
Benda-Beckmann
,
A. M.
, and
Lyons
,
A. P.
(
2018
). “
ADEON Underwater Soundscape and Modeling Metadata Standard, Version 1.0
,” Technical report by JASCO Applied Sciences for ADEON Prime Contract No. M16PC00003 (
JASCO
,
Halifax, Canada
), p.
35
.
8.
Antoniou
,
A.
(
2000
).
Digital Filters
(
McGraw-Hill
,
New York
).
9.
Christie
,
P.
,
Laws
,
R.
,
Kragh
,
E.
,
Nevill
,
P.
, and
Davies
,
K.
(
2019
). “
Noise characteristics of near-gun hydrophone data used in imaging
,” in
Proceedings of the 81st EAGE Conference & Exhibition 2019
,
June 3–6
,
London, UK
.
10.
Collins
,
M. D.
(
1990a
). “
Benchmark calculations for higher‐order parabolic equations
,”
J. Acoust. Soc. Am.
87
,
1535
1538
.
11.
Collins
,
M. D.
(
1990b
). “
The rotated parabolic equation and sloping ocean bottoms
,”
J. Acoust. Soc. Am.
87
,
1035
1037
.
12.
Collins
,
M. D.
, and
Evans
,
R. B.
(
1992
). “
A two‐way parabolic equation for acoustic backscattering in the ocean
,”
J. Acoust. Soc. Am.
91
,
1357
1368
.
13.
Dahl
,
P. H.
,
Bonnel
,
J.
, and
Dall'Osto
,
D. R.
(
2024
). “
On the equivalence of scalar-pressure and vector-based acoustic dosage measures as derived from time-limited signal waveforms
,”
J. Acoust. Soc. Am.
155
,
3291
3301
.
14.
Ewing
,
J.
, and
Zaunere
,
R.
(
1964
). “
Seismic profiling with a pneumatic sound source
,”
J. Geophys. Res.
69
,
4913
4915
, https://doi.org/10.1029/JZ069i022p04913.
15.
Felsen
,
L. B.
(
1990
). “
Benchmarks: An option for quality assessment
,”
J. Acoust. Soc. Am.
87
,
1497
1498
.
16.
Finneran
,
J. J.
(
2016
). “
Auditory weighting functions and TTS/PTS exposure functions for marine mammals exposed to underwater noise
,” Technical Report (
Space and Naval Warfare Systems Center Pacific
,
San Diego, CA
), p.
49
.
17.
Fisher
,
F. H.
, and
Simmons
,
V. P.
(
1977
). “
Sound absorption in sea water
,”
J. Acoust. Soc. Am.
62
,
558
564
.
37.
Hamilton
,
E. L.
(
1985
). “
Sound velocity as a function of depth in marine sediments
,”
J. Acoust. Soc. Am.
78
,
1348
1355
.
18.
Harris
,
F. J.
(
1978
). “
On the use of windows for harmonic analysis with the discrete Fourier transform
,”
Proc. IEEE
66
,
51
83
.
19.
Horton
,
J. W.
(
1959
).
Fundamentals of Sonar
(
United States Naval Institute
,
Washington, DC
).
38.
IEC 61260-1:2014
, “
Electroacoustics – Octave-band and fractional-octave-band filters – Part 1: Specifications
” (
International Electrotechnical Commission
,
Geneva, Switzerland
,
2014
).
39.
ISO 18405:2017, “
Underwater acoustics – Terminology
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2017
).
40.
ISO 80000-3:2019
, “
Quantities and units – Space and time
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2019a
).
41.
ISO 80000-4:2019
, “
Quantities and units – Mechanics
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2019b
).
20.
Jensen
,
F. B.
, and
Ferla
,
C. M.
(
1990
). “
Numerical solutions of range‐dependent benchmark problems in ocean acoustics
,”
J. Acoust. Soc. Am.
87
,
1499
1510
.
21.
Küsel
,
E. T.
, and
Siderius
,
M.
(
2019
). “
Comparison of propagation models for the characterization of sound pressure fields
,”
IEEE J. Oceanic Eng.
44
,
598
610
.
22.
Landrø
,
M.
,
Amundsen
,
L.
, and
Barker
,
D.
(
2011
). “
High-frequency signals from air-gun arrays
,”
Geophysics
76
,
Q19
Z99
.
23.
Lurton
,
X.
(
2016
). “
Modelling of the sound field radiated by multibeam echosounders for acoustical impact assessment
,”
Appl. Acoust.
101
,
201
221
.
24.
MacGillivray
,
A. O.
, and
de Jong
,
C. A. F.
(
2021
). “
A reference spectrum model for estimating source levels of marine shipping based on automated identification system data
,”
J. Mech. Sci. Eng.
9
,
369
.
25.
Munk
,
W. H.
(
1974
). “
Sound channel in an exponentially stratified ocean, with application to SOFAR
,”
J. Acoust. Soc. Am.
55
,
220
226
.
26.
Pekeris
,
C. L.
(
1948
). “
Theory of propagation of explosive sound in shallow water
,” in
Propagation of Sound in the Ocean, Geological Society of America, Memoir 27
(
Geological Society of America
,
New York
), pp.
1
117
.
27.
Petrov
,
P. S.
,
Tyshchenko
,
A. G.
, and
MacGillivray
,
A. O.
(
2024
). “
Three-dimensional modelling of underwater noise produced by a bulk carrier vessel and estimation of its environmental impact
,”
J. Acoust. Soc. Am.
155
,
3702
3714
.
28.
Prior
,
M. K.
,
Ainslie
,
M. A.
,
Halvorsen
,
M. B.
,
Hartstra
,
I.
,
Laws
,
R. M.
,
MacGillivray
,
A.
, and
Wang
,
L.
(
2021
). “
Characterization of the acoustic output of single marine-seismic airguns and clusters: The Svein Vaage dataset
,”
J. Acoust. Soc. Am.
150
,
3675
3692
.
29.
Sertlek
,
H. Ö.
,
Ainslie
,
M. A.
, and
Laws
,
R. M.
(
2019
). “
Agora source signatures for the international airgun modelling workshop
,” in
IEEE Dataport
, https://doi.org/10.21227/5081-yr65.
30.
Sidorovskaia
,
N.
, and
Li
,
K.
(
2022
). “
Marine compressed air source array primary acoustic field characterization from at-sea measurements
,”
J. Acoust. Soc. Am.
151
,
3957
3978
.
32.
Southall
,
B. L.
,
Finneran
,
J. J.
,
Reichmuth
,
C. J.
,
Nachtigall
,
P. E.
,
Ketten
,
D. R.
,
Bowles
,
A. E.
,
Ellison
,
W. T.
,
Nowacek
,
D. P.
, and
Tyack
,
P. L.
(
2019
). “
Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects
,”
Aquat. Mamm.
45
,
125
232
.
33.
Thomson
,
D. J.
(
1990
). “
Wide-angle parabolic equation solutions to two range-dependent benchmark problems
,”
J. Acoust. Soc. Am.
87
,
1514
1520
.
34.
Thorp
,
W. H.
(
1965
). “
Deep-ocean sound attenuation in the sub- and low-kilocycle-per-second region
,”
J. Acoust. Soc. Am.
38
,
648
654
.
35.
Tucker
,
D. G.
, and
Gazey
,
B. K.
(
1966
).
Applied Underwater Acoustics
(
Pergamon Press
,
Oxford
).
36.
Westwood
,
E. K.
(
1990
). “
Ray model solutions to the benchmark wedge problems
,”
J. Acoust. Soc. Am.
87
,
1539
1545
.

Supplementary Material