This presentation discusses modeling the propagation of nonlinear waves in a continuum phononic material. This system is shown to exhibit amplitude-dependent response and energy transfer between frequencies, which are well studied phenomena of nonlinear discrete systems, but are relatively unexplored in fully elastic continuum models. The phononic material is composed of repeated layers of stiff and soft materials, and the nonlinearity is introduced through a nonlinear hyperelastic Gent model in the soft material. We analyze the dispersion of the linearized system using Bloch-wave analysis to identify band gaps in the system, and we use full-scale time-domainfinite element simulations to analyze the dynamic behavior of the system. Generation of zero frequency and second harmonic frequency amplitudes as well as their accumulation with distance are observed, and the influence of phononic band gaps on nonlinear wave propagation are described. We explore the influence of material nonlinearity in soft materials in continuum phononic materials as a mechanism for control of nonlinear wave propagation.
Skip Nav Destination
Article navigation
Meeting abstract. No PDF available.
October 01 2021
Wave propagation in a continuum nonlinear phononic material with soft nonlinear elastic layers
Elizabeth Smith;
Elizabeth Smith
Mech. Sci. and Eng., Univ. of Illinois at Urbana Champaign, Mech. Eng. Bldg., 1206 W Green St., Urbana, IL 61801, esmith19@illinois.edu
Search for other works by this author on:
Kathryn Matlack
Kathryn Matlack
Mech. Sci. and Eng., Univ. of Illinois at Urbana Champaign, Urbana, IL
Search for other works by this author on:
J. Acoust. Soc. Am. 150, A147 (2021)
Citation
Elizabeth Smith, Kathryn Matlack; Wave propagation in a continuum nonlinear phononic material with soft nonlinear elastic layers. J. Acoust. Soc. Am. 1 October 2021; 150 (4_Supplement): A147. https://doi.org/10.1121/10.0007933
Download citation file:
20
Views