The development of technologies capable of determining direct information about cell status is highly required. Confocal Raman microscopy offers a singular pathway to monitoring chemical “fingerprints” of intracellular components via radiation-complex biomolecules interactions. Nevertheless, Raman spectroscopy's biological applications are still challenging due to the small probability of spontaneous light scattering events with bio-micromolecules. As a consequence, the signal-to-noise ratio is low. Acoustofluidic devices offer an ingenious solution to enhance the Raman signal by levitating the biological sample. In this work, we present a cheap 3-D-printed acoustofluidic device for confocal Raman spectroscopy. The device comprises a cylindrical cavity with a 750 μm-height and 4 mm-diameter, which operates around 1 MHz. Raman spectra of polystyrene microparticles (10 μm-diameter), levitating at 300 μm in water, were obtained by using a 785 nm excitation laser focused through a 40x objective lens. In another set of careful experiments, the device efficiently trapped 20-μm macrophages (cell line j774.A1), of which the preliminary Raman spectra will be presented. Finally, we will discuss Raman spectroscopy's trends as an optoacoustofluidic technique, as well as its applications in biotechnology and microbiology.
Skip Nav Destination
Article navigation
October 2020
Meeting abstract. No PDF available.
October 01 2020
A 3-D-printed acoustofluidic device for Raman spectroscopy Free
Harrisson D. Santos;
Harrisson D. Santos
Phys., Universidade Federal de Alagoas, UFAL - Universidade Federal de Alagoas s/n, Av. Lourival Melo Mota - Tabuleiro do Martins, AL, Benedito Bentos 1, Maceió, Alagoas 57084040, Brazil, [email protected]
Search for other works by this author on:
Giclênio C. da Silva;
Giclênio C. da Silva
Phys., Universidade Federal de Alagoas, Maceió, Brazil
Search for other works by this author on:
Amanda E. da Silva;
Amanda E. da Silva
Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, lagoas, Brazil
Search for other works by this author on:
Carlos Jacinto da Silva;
Carlos Jacinto da Silva
Phys., Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
Search for other works by this author on:
Magna S. Moreira;
Magna S. Moreira
Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
Search for other works by this author on:
Glauber T. Silva
Glauber T. Silva
Phys., Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
Search for other works by this author on:
Harrisson D. Santos
Phys., Universidade Federal de Alagoas, UFAL - Universidade Federal de Alagoas s/n, Av. Lourival Melo Mota - Tabuleiro do Martins, AL, Benedito Bentos 1, Maceió, Alagoas 57084040, Brazil, [email protected]
Giclênio C. da Silva
Phys., Universidade Federal de Alagoas, Maceió, Brazil
Amanda E. da Silva
Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, lagoas, Brazil
José H. de Andrade
Carlos Jacinto da Silva
Phys., Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
Magna S. Moreira
Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
Ueslen Silva
Glauber T. Silva
Phys., Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
J. Acoust. Soc. Am. 148, 2757 (2020)
Citation
Harrisson D. Santos, Giclênio C. da Silva, Amanda E. da Silva, José H. de Andrade, Carlos Jacinto da Silva, Magna S. Moreira, Ueslen Silva, Glauber T. Silva; A 3-D-printed acoustofluidic device for Raman spectroscopy. J. Acoust. Soc. Am. 1 October 2020; 148 (4_Supplement): 2757. https://doi.org/10.1121/1.5147666
Download citation file:
98
Views
Citing articles via
Focality of sound source placement by higher (ninth) order ambisonics and perceptual effects of spectral reproduction errors
Nima Zargarnezhad, Bruno Mesquita, et al.
A survey of sound source localization with deep learning methods
Pierre-Amaury Grumiaux, Srđan Kitić, et al.
Variation in global and intonational pitch settings among black and white speakers of Southern American English
Aini Li, Ruaridh Purse, et al.
Related Content
Advancing Raman spectroscopy of erythrocytes with 3D-printed acoustofluidic devices
Appl. Phys. Lett. (July 2023)
Numerical simulation and experimental studies on acoustofluidic separation of microparticles using 3D printed chips
J. Acoust. Soc. Am. (March 2023)
Modulation of acoustofluidic parameters to assess effect on molecular loading in human T cells
J. Acoust. Soc. Am. (October 2021)
Acoustofluidic-mediated molecular delivery to human T cells with a three-dimensional-printed flow chamber
J. Acoust. Soc. Am. (December 2021)
Acoustofluidic-mediated molecular delivery to human T cells for improved immunotherapies
J. Acoust. Soc. Am. (October 2020)