Microbaroms are atmospheric pressure oscillations radiated from non-linear ocean surface wave interactions. Large regions of interacting high-energetic ocean waves, e.g., ocean swell and marine storms, radiate almost continuously acoustic energy. Microbaroms dominate the infrasound ambient noise field, which makes them a preferred source for passive atmospheric probing. Microbarom are simulated using a two-fluid model, representing an atmosphere over a finite-depth ocean and a coupled ocean-wave model providing the sea state. Air-sea coupling is crucial due to the two-way interaction between surface winds and ocean waves. In this study, a detailed overview is given on how global microbarom simulations are obtained, including a sensitivity analysis of the various model input data and parameterizations. Simulations are validated by infrasound array observations of the International Monitoring Systems (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). An brief demonstration is given on the added value of global microbarom simulationsfor infrasound studies and how to obtain these source simulations.