Studies on sound field control methods able to create independent listening zones in a single acoustic space have recently been undertaken due to the potential of such methods for various practical applications, such as individual audio streams in home entertainment. Existing solutions to the problem have shown to be effective in creating high and low sound energy regions under anechoic conditions. Although some case studies in a reflective environment can also be found, the capabilities of sound zoning methods in rooms have not been fully explored. In this paper, the influence of low-order (early) reflections on the performance of key sound zone techniques is examined. Analytic considerations for small-scale systems reveal strong dependence of performance on parameters such as source positioning with respect to zone locations and room surfaces, as well as the parameters of the receiver configuration. These dependencies are further investigated through numerical simulation to determine system configurations which maximize the performance in terms of acoustic contrast and array control effort. The design rules for source and receiver positioning are suggested, for improved performance under a given set of constraints such as a number of available sources, zone locations, and the direction of the dominant reflection.