The acoustic guitar produces tones by transferring energy from the strings, through the bridge to the top plate, back, and air cavity of the guitar. The vibrations are ultimately radiated into the air as sound. The air‐cavity and body resonances of the guitar play an important role in both the tone and the sustain (the time it takes notes to decay) produced by the guitar. To study the relationship between resonances of the guitar and the sustain of notes, the resonance frequencies were measured using a mechanical shaker attached to the body of the guitar and laser Doppler vibrometer to measure its vibration. A string was tuned to different frequencies and plucked. The decay of the note was measured with an electromagnetic pickup that measured the vibration of the string, a vibrometer to measure vibration of the top plate, and microphones located inside and outside the guitar. As expected, when the fundamental frequency of the string was near one of the resonances of the guitar, the decay rate was faster (shorter sustain) than when the string was between resonances. The relationship between the decay rates of the different parts of the system will also be discussed.