Ewart and Percival [J. Acoust. Soc. Am. 80, 1745 (1986)] have shown that the generalized gamma distribution effectively models intensity probability distributions of temporal fluctuations observed in a field experiment and transverse spatial fluctuations simulated in numerical experiments. In both cases the fluctuations are due to wave propagation through a medium with a random index of refraction. Here, the transverse spatial intensity fluctuations of a wave propagating through a medium with a power‐law autocorrelation function of wave speed are modeled over a regime that spans 108 in scattering strength and 106 in scaled range (range divided by the Fresnel length). This scattering parameter regime transforms to ranges between 100 m and 100 km and to frequencies between 100 Hz and 100 kHz when normalizations typical of observed ocean internal wave fluctuations are used. Contour plots of the variance, skewness, and kurtosis of the intensity distribution are presented for the range/frequency plane. It is shown that the region of saturation, i.e., exponential intensity distribution, cannot be attained except for very large source strengths. Also, the lognormal intensity distribution, which is assumed for scintillation indices near zero, can be applied only in the region of vanishingly small intensity fluctuations. This work, while based on plane‐wave propagation and a fourth‐order power‐law transverse spectrum of the medium, retains the essential character of the intensity fluctuations and provides a prescription for modeling the intensity distribution for any medium where the random index of refraction process can be assumed stationary.
Skip Nav Destination
Article navigation
October 1989
October 01 1989
A model of the intensity probability distribution for wave propagation in random media
Terry E. Ewart
Terry E. Ewart
Applied Physics Laboratory and School of Oceanography, College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington 98105‐6698
Search for other works by this author on:
J. Acoust. Soc. Am. 86, 1490–1498 (1989)
Article history
Received:
March 24 1989
Accepted:
June 22 1989
Citation
Terry E. Ewart; A model of the intensity probability distribution for wave propagation in random media. J. Acoust. Soc. Am. 1 October 1989; 86 (4): 1490–1498. https://doi.org/10.1121/1.398710
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Modeling the general pdf of intensity in terms of the scattering parameters for WPRM
J Acoust Soc Am (August 2005)
Forward scattered waves in random media—The probability distribution of intensity
J Acoust Soc Am (December 1986)
The PDF of intensity for Ocean WPRM—15 years later
J Acoust Soc Am (May 2001)
From quantum stochastic differential equations to Gisin-Percival state diffusion
J. Math. Phys. (August 2017)
The Gisin-Percival stochastic Schrödinger equation from standard quantum filtering theory
J. Math. Phys. (April 2018)