Responses of auditory‐nerve fibers in anesthetized cats were recorded for synthetic voiceless fricative consonants. The four stimuli (/x/, /š/, /s/, and /f/) were presented at two levels corresponding to speech in which the levels of the vowels would be approximately 60 and 75 dB SPL, respectively. Discharge patterns were characterized in terms of PST histograms and their power spectra. For both stimulus levels, frequency regions in which the stimuli had considerable energy corresponded well with characteristic‐frequency (CF) regions in which average discharge rates were the highest. At the higher level, the profiles of discharge rate against CF were more distinctive for the stimulus onset than for the central portion. Power spectra of PST histograms had large response components near fiber characteristic frequencies for CFs up to 3–4 kHz, as well as low‐frequency components for all fibers. The relative amplitudes of these components varied for the different stimuli. In general, the formant frequencies of the fricatives did not correspond with the largest response components, except for formants below about 3 kHz. Processing schemes based on fine time patterns of discharge that were effective for vowel stimuli generally failed to extract the formant frequencies of fricatives.

This content is only available via PDF.
You do not currently have access to this content.