Three different integral formulations have been used as a basis for obtaining approximate solutions of the exterior steady‐state acoustic radiation problem for an arbitrary surface whose normal velocity is specified: (1) the simple‐source formulation, adapted from potential theory; (2) the surface Helmholtz integral formulation, based on the integral expression for pressure in the field in terms of surface pressure and normal velocity; and (3) the interior Helmholtz integral formulation, in which the surface pressure is determined by making a certain integral vanish for all points interior to the radiating surface. For certain characteristic wavenumbers, it is shown that no solution of the simple‐source formulation exists in general and that there is no unique solution of the surface Helmholtz integral formulation. The interior Helmholtz integral formulation is subject to similar difficulties and has undesirable computational characteristics. A Combined Helmholtz Integral Equation Formulation (CHIEF) that overcomes the deficiencies of the first two methods and the undesirable computational characteristics of the third, is described. The significant improvement over the previous three methods, which is accomplished through the use of CHIEF, is illustrated by numerical examples involving spheres, finite cylinders, cubes, and a steerable array mounted in two different boxlike structures.

This content is only available via PDF.
You do not currently have access to this content.