Experiments are described in which heat flow from a metal into a bathing liquid is measured in the absence and in the presence of acoustic streaming. The streaming is produced by a resonant vibrating air bubble resting on a solid plane, of which the heated metal forms a part. The temperature difference between the heated metal and the main body of surrounding fluid is kept constant. In these experiments, the heat flow rate is found to increase approximately linearly with the first‐order sonic amplitude when the liquid is water. Increases up to 10‐fold over the nonstreaming values of heat flow are obtained. When more‐viscous liquids (glycerin‐water mixtures) are used, the relationship between heat flow and sonic amplitude is non‐linear. In the latter situation, a region appears in which the flow rate decreases with increasing sonic amplitude. It is found that the decrease is associated with a reversal in direction of the streaming above the vibrating bubble. An order‐of‐magnitude theory is presented that gives rough numerical agreement with experiment and that predicts a linear relationship between heat flow and sonic amplitude.
Skip Nav Destination
Article navigation
July 1966
July 20 2005
Heat Transfer across a Solid‐Liquid Interface in the Presence of Acoustic Streaming
Robert K. Gould
Robert K. Gould
Lafayette College, Easton, Pennsylvania
Search for other works by this author on:
J. Acoust. Soc. Am. 40, 219–225 (1966)
Article history
Received:
August 12 1965
Citation
Robert K. Gould; Heat Transfer across a Solid‐Liquid Interface in the Presence of Acoustic Streaming. J. Acoust. Soc. Am. 1 July 1966; 40 (1): 219–225. https://doi.org/10.1121/1.1910043
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00