Triple transition echo (TTE) in surface acoustic wave (SAW) delay line sensors arises from multiple reflections within the device, generating spurious signals that interfere with the primary sensor response. We present a comprehensive approach to eliminate the TTE effect through simultaneous optimization of interdigital transducer configuration, input excitation signal characteristics, and output time window selection. The methodology is verified with an electronic implementation of the delay line sensor. Experimental results demonstrate that this strategy achieves complete temporal separation between the primary signal and TTE echoes. Implementation through a dedicated electronic system significantly improved the sensor linearity from 0.916 to 0.999 for temperature sensing applications and from 0.946 to 0.995 for mass loading measurements. The enhanced signal quality and measurement reliability make this method particularly valuable for high-precision SAW sensing applications.

1.
W.
Buff
,
S.
Klett
,
M.
Rusko
,
J.
Ehrenpfordt
, and
M.
Goroli
, “
Passive remote sensing for temperature and pressure using SAW resonator devices
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
45
(
5
),
1388
1392
(
1998
).
2.
R. S.
Westafer
,
G.
Levitin
,
D. W.
Hess
,
M. H.
Bergin
, and
W. D.
Hunt
, “
Detection of ppb ozone using a dispersive surface acoustic wave reflective delay line with integrated reference signal
,”
Sens. Actuators B
192
,
406
413
(
2014
).
3.
W.
Huang
,
Q.
Yang
,
J.
Liao
,
S.
Ramadan
,
X.
Fan
,
S.
Hu
,
X.
Liu
,
J.
Luo
,
R.
Tao
, and
C.
Fu
, “
Integrated Rayleigh wave streaming-enhanced sensitivity of shear horizontal surface acoustic wave biosensors
,”
Biosens. Bioelectron.
247
,
115944
(
2024
).
4.
C.
Campbell
,
Surface Acoustic Wave Devices for Mobile and Wireless Communications, Four-Volume Set
(
Academic Press
,
New York
,
1998
).
5.
T.
Yamazaki
,
J.
Kondoh
,
Y.
Matsui
, and
S.
Shiokawa
, “
Estimation of components and concentrations in mixture solutions of electrolytes using a liquid flow system with acoustic wave sensor
,” in
Proceedings of the IEEE Ultrasonics Symposium
,
Sendai, Japan
(
1998
), pp.
505
508
.
6.
I. D.
Avramov
,
A.
Voigt
, and
M.
Rapp
, “
Rayleigh SAW resonators using gold electrode structure for gas sensor applications in chemically reactive environments
,”
Electron. Lett.
41
(
7
),
450
458
(
2005
).
7.
A.
Mauder
, “
SAW gas sensors: Comparison between delay line and two port resonator
,”
Sens. Actuators B
26
,
187
190
(
1995
).
8.
H.
Tarbague
,
J. L.
Lachaud
,
S.
Destor
,
L.
Vellutini
,
J. P.
Pillot
,
B.
Bennetau
,
E.
Pascal
,
D.
Moynet
,
D.
Mossalayi
,
D.
Rebière
, and
C.
Dejous
, “
PDMS (polydimethylsiloxane) microfluidic chip molding for love wave biosensor
,”
J. Integr. Circuits Syst.
5
(
2
),
125
133
(
2020
).
9.
Y. S.
Choi
,
J.
Lee
,
Y.
Lee
,
J.
Kwak
, and
S.
Suk Lee
, “
Increase in detection sensitivity of surface acoustic wave biosensor using triple transit echo wave
,”
Appl. Phys. Lett.
113
(
8
),
083702
(
2018
).
10.
J.
Kondoh
,
Y.
Okiyama
,
S.
Mikuni
,
Y.
Matsui
,
M.
Nara
,
T.
Mori
, and
H.
Yatsuda
, “
Development of a shear horizontal surface acoustic wave sensor system for liquids with a floating electrode unidirectional transducer
,”
Jpn. J. Appl. Phys.
47
,
4065
4069
(
2008
).
11.
L.
Shao
,
S. W.
Ding
,
Y.
Ma
,
Y.
Zhang
,
N.
Sinclair
, and
M.
Lončar
, “
Thermal modulation of gigahertz surface acoustic waves on lithium niobate
,”
Phys. Rev. Appl.
18
,
054078
(
2022
).
12.
J.
Yamada
, “
Relation of the insertion loss and the triple transit echo in surface acoustic wave unidirectional transducers
,”
Ultrasonics
40
(
1–8
),
935
937
(
2002
).
13.
S.
Lee
,
K. B.
Kim
, and
Y. I.
Kim
, “
Love wave SAW biosensors for detection of antigen-antibody binding and comparison with SPR biosensor
,”
Food Sci. Biotechnol.
20
(
5
),
1413
1418
(
2011
).
14.
F.
Josse
,
F.
Bender
, and
R. W.
Cernosek
, “
Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids
,”
Anal. Chem.
73
(
24
),
5937
5944
(
2001
).
15.
A.
Leidl
,
I.
Oberlack
,
U.
Schaber
,
B.
Mader
, and
S.
Drost
, “
Surface acoustic wave devices and applications in liquid sensing
,”
Smart Mater. Struct.
6
(
6
),
680
688
(
1997
).
You do not currently have access to this content.