A lumped parameter approach to the problem of acoustic wave scattering by a perforated cylinder has been presented. The proposed framework enables analytical evaluation of the scattering amplitudes of all harmonics and derivation of the dispersion relations for the guided wave propagating inside the cylinder. The lumped parameter boundary condition enables straightforward estimation of the effect of different perforation patterns on the scattering characteristics and internal resonances of the perforated cylinder. The derived equations were treated analytically and validated numerically. It was demonstrated how the proposed theory can be applied for estimation of the fundamental frequency of a two-dimensional Helmholtz resonator with the complex configurations of openings. The predictions are in good agreement with the previously published results.

1.
M. L.
Munjal
,
Acoustics of Ducts and Mufflers
, 2nd ed. (
Wiley
,
Chichester, West Sussex, UK
,
2014
).
2.
A.
Chaigne
and
J.
Kergomard
,
Acoustics of Musical Instruments
(
Springer
,
New York
,
2016
).
3.
R.
Kirby
and
D. D.
Francisco
, “
Analytical mode matching for a circular dissipative silencer containing mean flow and a perforated pipe
,”
J. Acoust. Soc. Am.
122
,
3471
3482
(
2007
).
4.
A.
Dell
,
A.
Krynkin
,
K. V.
Horoshenkov
, and
G.
Sailor
, “
Low frequency attenuation of acoustic waves in a perforated pipe
,”
J. Acoust. Soc. Am.
153
,
1791
1801
(
2023
).
5.
J. W.
Strutt
(Lord Rayleigh),
Theory of Sound
(
Dover
,
New York
,
1945
), Vol.
2
.
6.
S.
Laurens
,
E.
Piot
,
A.
Bendali
,
M'B.
Fares
, and
S.
Tordeux
, “
Effective conditions for the reflection of an acoustic wave by low-porosity perforated plates
,”
J. Fluid Mech.
743
,
448
480
(
2014
).
7.
F.
Montiel
,
H.
Chung
,
M.
Karimi
, and
N.
Kessissoglou
, “
An analytical and numerical investigation of acoustic attenuation by a finite sonic crystal
,”
Wave Motion
70
,
135
151
(
2017
).
8.
A.
Maurel
,
J. F.
Mercier
,
T. K.
Pham
,
J.-J.
Marigo
, and
A.
Ourir
, “
Enhanced resonance of sparse arrays of Helmholtz resonators—Application to perfect absorption
,”
J. Acoust. Soc. Am.
145
,
2552
2560
(
2019
).
9.
M. S.
Howe
,
Acoustics of Fluid-Structure Interactions
(
Cambridge University Press
,
Cambridge, UK
,
1998
).
10.
S.
Guenneaua
,
A. B.
Movchan
, and
N. V.
Movchan
, “
Localised bending modes in split ring resonators
,”
Phys. B
394
,
141
144
(
2007
).
11.
H. G.
Dosch
, “
Radiative feedback in Helmholtz resonators with more than one opening
,”
J. Acoust. Soc. Am.
140
,
3576
3581
(
2016
).
12.
X.
Hu
,
K.-M.
Ho
,
C. T.
Chan
, and
J.
Zi
, “
Homogenization of acoustic metamaterials of Helmholtz resonators in fluid
,”
Phys. Rev. B
77
,
172301
(
2008
).
13.
A.
Krynkin
,
O.
Umnova
,
A. Y. B.
Chong
,
S.
Taherzadeh
, and
K.
Attenborough
, “
Scattering by coupled resonating elements in air
,”
J. Phys. D: Appl. Phys.
44
,
125501
(
2011
).
14.
F.
Montiel
and
H.
Chung
, “
Planar acoustic scattering by a multi-layered split ring resonator
,”
J. Acoust. Soc. Am.
148
,
3698
3708
(
2020
).
15.
D.
Eggler
,
H.
Chung
,
F.
Montiel
,
J.
Pan
, and
N.
Kessissoglou
, “
Active noise cloaking of 2D cylindrical shells
,”
Wave Motion
87
,
106
122
(
2019
).
16.
M. J. A.
Smith
and
I. D.
Abrahams
, “
Tailored acoustic metamaterials. Part I. Thin- and thick-walled Helmholtz resonator arrays
,”
Proc. R. Soc. A
478
,
20220124
(
2022
).
17.
P.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
,
1953
), Vol.
2
.
18.
A.
Melnikov
,
Y. K.
Chiang
,
L.
Quan
,
S.
Oberst
,
A.
Alù
,
S.
Marburg
, and
D.
Powell
, “
Acoustic meta-atom with experimentally verified maximum Willis coupling
,”
Nat. Commun.
10
,
3148
(
2019
).
19.
J.-J.
Marigo
and
A.
Maurel
, “
Homogenization models for thin rigid structured surfaces and films
,”
J. Acoust. Soc. Am.
140
,
260
273
(
2016
).
20.
J.-F.
Mercier
,
J.-J.
Marigo
, and
A.
Maurel
, “
Influence of the neck shape for Helmholtz resonators
,”
J. Acoust. Soc. Am.
142
,
3703
3714
(
2017
).
21.
M. R.
Bai
and
Y.-Y.
Lo
, “
Refined acoustic modeling and analysis of shotgun microphones
,”
J. Acoust. Soc. Am.
133
,
2036
2045
(
2013
).
22.
A. B.
Baynes
and
O. A.
Godin
, “
Rayleigh scattering of a cylindrical sound wave by an infinite cylinder
,”
J. Acoust. Soc. Am.
142
,
3613
3623
(
2017
).
23.
A. B.
Baynes
and
O. A.
Godin
, “
Scattering of low frequency sound by fluid and solid cylinders
,”
J. Sound Vib.
434
,
336
357
(
2018
).
24.
I. A.
Urusovskii
, “
Sound radiation from a perforated tube transmitting a harmonic wave
,”
Sov. Phys. Acoust.
18
,
375
380
(
1973
).
25.
P. A.
Martin
,
Multiple Scattering
(
Cambridge University Press
,
Cambridge, UK
,
2006
).
26.
L. M.
Brekhovskikh
and
O. A.
Godin
,
Acoustics of Layered Media
(
Springer
,
Berlin
,
1992
), Vol.
2
.
27.
P. A.
Martin
,
Time-Domain Scattering
(
Cambridge University Press
,
Cambridge, UK
,
2021
).
28.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Butterworth-Heinemann
,
UK
,
1987
).
29.
E. O.
Tuck
, “
Matching problems involving flow through small holes
,”
J. Adv. Appl. Mech.
15
,
89
158
(
1975
).
30.
G. R.
Bigg
and
E. O.
Tuck
, “
Two-dimensional resonator with small openings
,”
J. Aust. Math. Soc. B
24
,
2
27
(
1982
).
31.
J.-F.
Allard
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
(
Wiley
,
West Sussex, UK
,
2009
).
32.
P. A.
Martin
and
R. A.
Dalrymple
, “
Scattering of long waves by cylindrical obstacles and gratings using matched asymptotic expansions
,”
J. Fluid Mech.
188
,
465
490
(
1988
).
33.
D.-Y.
Maa
, “
Potential of microperforated panel absorber
,”
J. Acoust. Soc. Am.
104
,
2861
2866
(
1998
).
34.
L.
Jaouen
and
F.
Chevillotte
, “
Length correction of 2D discontinuities or perforations at large wavelengths and for linear acoustics
,”
Acta. Acust. Acust.
104
,
243
250
(
2018
).
35.
P. A.
Martin
and
A. T.
Skvortsov
, “
Scattering by a sphere in a tube, and related problems
,”
J. Acoust. Soc. Am.
148
,
191
200
(
2020
).
36.
P. A.
Martin
and
A. T.
Skvortsov
, “
On blockage coefficients: Flow past a body in a pipe
,”
Proc. Roy. Soc. A
478
,
20210677
(
2022
).
37.
A. M.
Berezhkovskii
,
M. I.
Monine
,
C. B.
Muratov
, and
S. Y.
Shvartsman
, “
Homogenization of boundary conditions for surfaces with regular arrays of traps
,”
J. Chem. Phys.
124
,
036103
(
2006
).
38.
L.
Dagdug
,
A. M.
Berezhkovskii
, and
S. M.
Bezrukov
, “
Diffusion resistance of segmented channels
,”
J. Phys. Chem. B
127
,
7291
7298
(
2023
).
39.
A.
Skvortsov
, “
Mean first passage time for a particle diffusing on a disk with two absorbing traps at the boundary
,”
Phys. Rev. E
102
,
012123
(
2020
).
40.
L.
Dagdug
,
A. M.
Berezhkovskii
, and
A. T.
Skvortsov
, “
Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach
,”
J. Chem. Phys.
142
,
234902
(
2015
).
41.
A. T.
Skvortsov
,
A. M.
Berezhkovskii
, and
L.
Dagdug
, “
Note: Boundary homogenization for a circle with periodic absorbing arcs. Exact expression for the effective trapping rate
,”
J. Chem. Phys.
143
,
226101
(
2015
).
42.
A. T.
Skvortsov
,
L.
Dagdug
,
A. M.
Berezhkovskii
,
I. R.
MacGillivray
, and
S. M.
Bezrukov
, “
Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization
,”
Phys. Rev. E
103
,
012408
(
2021
).
43.
A. T.
Skvortsov
,
D. S.
Grebenkov
,
L.
Chan
, and
A.
Ooi
, “
Slip length for a viscous flow over a plane with complementary lattices of superhydrophobic spots
,”
Eur. J. Mech. - B/Fluids
106
,
89
93
(
2024
).
44.
A.
Leissa
,
Vibration of Shells
(
Acoustical Society of America
,
Melville, New York
,
1993
).
45.
S. A.
Hambric
, “
Practical tutorial on cylindrical structure vibro-acoustics. Part 1—vibrations
,” in
Proceedings of INTERNOISE 2022
,
Glasgow, Scotland, UK
(21–24 August 2022) (
Institute of Noise Control Engineering
,
Wakefield, MA
), pp.
140
149
(
2023
).
46.
D.
Takahashi
and
M.
Tanaka
, “
Flexural vibration of perforated plates and porous elastic materials under acoustic loading
,”
J. Acoust. Soc. Am.
112
,
1456
1464
(
2002
).
47.
H.-S.
Kim
,
S.-R.
Kim
,
B.-K.
Kim
,
P.-S.
Ma
, and
Y.-H.
Seo
, “
Sound transmission loss of multi-layered infinite microperforated plates
,”
J. Acoust. Soc. Am.
147
,
508
515
(
2020
).
48.
P.
Cobo
,
C.
de la Colina
, and
F.
Simón
, “
On the modelling of microslit panel absorbers
,”
Appl. Acoust.
159
,
107118
(
2020
).
49.
M.
Abramowitz
,
I. A.
Stegun
(Eds.),
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1972
).
50.
A.
Elbert
, “
Some recent results on the zeros of Bessel functions and orthogonal polynomials
,”
J. Comp. Appl. Math.
133
,
65
83
(
2001
).
51.
O. A.
Godin
and
A. B.
Baynes
, “
Passive, broadband suppression of radiation of low-frequency sound
,”
J. Acoust. Soc. Am.
143
,
EL67
EL73
(
2018
).
52.
M. J.
Ward
and
J. B.
Keller
, “
Strong localized perturbations of eigenvalue problems
,”
SIAM J. Appl. Math.
53
,
770
798
(
1993
).
53.
A. M. J.
Davis
and
S. G.
Llewellyn Smith
, “
Perturbation of eigenvalues due to gaps in two-dimensional boundaries
,”
Proc. R. Soc. A
463
,
759
786
(
2007
).
54.
J.
Carbajo
,
S.-H.
Nam
, and
N. X.
Fang
, “
Fabrication of micro-perforated panel (MPP) sound absorbers using digital light processing (DLP) 3D printing technology
,”
Appl. Acoust.
216
,
109788
(
2024
).
You do not currently have access to this content.