We describe and implement a numerical method for modelling the frequency-dependent power-law absorption of ultrasound in tissue, as governed by the first order linear wave equations with a loss taking the form of a fractional time derivative. The (Caputo) fractional time derivative requires the full problem history, which is contained within an iterative procedure. The resulting numerical method requires a fixed (static) memory cost, irrespective of the number of time steps. The spatial domain is treated by the Fourier spectral method. Numerically. comparisons are made against a model for the same power-law absorption with loss described by the fractional-Laplacian operator. One advantage of the fractional time derivative over the fractional-Laplacian operator is the local treatment of the power-law, allowing for a spatially varying frequency power-law.

1.
Birk
,
C.
, and
Song
,
C.
(
2010
). “
An improved non-classical method for the solution of fractional differential equations
,”
Comput. Mech.
46
,
721
734
.
2.
Blackstock
,
D. T.
(
1967
). “
Transient solution for sound radiated into a viscous fluid
,”
J. Acoust. Soc. Am.
41
(
5
),
1312
1319
.
3.
Caputo
,
M.
(
1966
). “
Linear models of dissipation whose q is almost frequency independent
,”
Ann. Geophys.
19
(
4
),
383
393
.
4.
Caputo
,
M.
(
1967
). “
Linear models of dissipation whose q is almost frequency independent—II
,”
Geophys. J. Int.
13
(
5
),
529
539
.
5.
Chen
,
W.
, and
Holm
,
S.
(
2003
). “
Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law
,” arXiv:math-ph/0303040.
6.
Chen
,
W.
, and
Holm
,
S.
(
2004
). “
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
,”
J. Acoust. Soc. Am.
115
(
4
),
1424
1430
.
7.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
(
1967
). “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
(
2
),
215
234
.
8.
Diethelm
,
K.
(
2008
). “
An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives
,”
Numer. Algor.
47
(
4
),
361
390
.
9.
Ford
,
N. J.
, and
Simpson
,
A. C.
(
2001
). “
The numerical solution of fractional differential equations: Speed versus accuracy
,”
Numer. Algorithms
26
,
333
346
.
10.
Goss
,
S.
,
Frizzell
,
L.
, and
Dunn
,
F.
(
1979
). “
Ultrasonic absorption and attenuation in mammalian tissues
,”
Ultrasound Med. Biol.
5
(
2
),
181
186
.
11.
Gutleb
,
T. S.
, and
Carrillo
,
J. A.
(
2023
). “
A static memory sparse spectral method for time-fractional PDEs
,”
J. Comput. Phys.
494
,
112522
.
12.
Kelly
,
J. F.
, and
McGough
,
R. J.
(
2016
). “
Approximate analytical time-domain Green's functions for the Caputo fractional wave equation
,”
J. Acoust. Soc. Am.
140
(
2
),
1039
1047
.
13.
Li
,
F.
,
Villa
,
U.
,
Park
,
S.
, and
Anastasio
,
M. A.
(
2022
). “
3-D stochastic numerical breast phantoms for enabling virtual imaging trials of ultrasound computed tomography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
69
(
1
),
135
146
.
14.
Liebler
,
M.
,
Ginter
,
S.
,
Dreyer
,
T.
, and
Riedlinger
,
R. E.
(
2004
). “
Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation
,”
J. Acoust. Soc. Am.
116
(
5
),
2742
2750
.
15.
Lou
,
Y.
,
Zhou
,
W.
,
Matthews
,
T. P.
,
Appleton
,
C. M.
, and
Anastasio
,
M. A.
(
2017
). “
Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging
,”
J. Biomed. Opt.
22
(
4
),
041015
.
16.
Mainardi
,
F.
(
2022
).
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
, 2nd ed. (
World Scientific
, Singapore).
17.
Moran
,
C.
,
Bush
,
N.
, and
Bamber
,
J.
(
1995
). “
Ultrasonic propagation properties of excised human skin
,”
Ultrasound Med. Biol.
21
(
9
),
1177
1190
.
18.
Narayana
,
P. A.
, and
Ophir
,
J.
(
1983
). “
On the frequency dependence of attenuation in normal and fatty liver
,”
IEEE Trans. Son. Ultrason.
30
(
6
),
379
382
.
19.
Podlubny
,
I.
(
1998
).
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, Mathematics in Science and Engineering Vol. 198 (
Elsevier
, Amsterdam, Netherlands).
20.
Stokes
,
G. G.
(
2007
). “
On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids
,” in
Classics of Elastic Wave Theory
(Society of Exploration Geophysicists, Houston, TX).
21.
Szabo
,
T. L.
(
1994
). “
Time domain wave equations for lossy media obeying a frequency power law
,”
J. Acoust. Soc. Am.
96
(
1
),
491
500
.
22.
Szabo
,
T. L.
(
2014
).
Diagnostic Ultrasound Imaging: Inside Out
(
Academic Press
, Cambridge, MA).
23.
Tabei
,
M.
,
Mast
,
T. D.
, and
Waag
,
R. C.
(
2002
). “
A k-space method for coupled first-order acoustic propagation equations
,”
J. Acoust. Soc. Am.
111
(
1
),
53
63
.
24.
Treeby
,
B. E.
, and
Cox
,
B.
(
2011
). “
A k-space Green's function solution for acoustic initial value problems in homogeneous media with power law absorption
,”
J. Acoust. Soc. Am.
129
(
6
),
3652
3660
.
25.
Treeby
,
B. E.
, and
Cox
,
B. T.
(
2010a
). “
k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields
,”
J. Biomed. Opt.
15
(
2
),
021314
.
26.
Treeby
,
B. E.
, and
Cox
,
B. T.
(
2010b
). “
Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian
,”
J. Acoust. Soc. Am.
127
(
5
),
2741
2748
.
27.
Waters
,
K. R.
,
Hughes
,
M. S.
,
Mobley
,
J.
,
Brandenburger
,
G. H.
, and
Miller
,
J. G.
(
2000
). “
On the applicability of Kramers–Krönig relations for ultrasonic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
(
2
),
556
563
.
28.
Waters
,
K. R.
,
Mobley
,
J.
, and
Miller
,
J. G.
(
2005
). “
Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
5
),
822
823
.
29.
Wells
,
P.
(
1975
). “
Absorption and dispersion of ultrasound in biological tissue
,”
Ultrasound Med. Biol.
1
(
4
),
369
376
.
30.
Wismer
,
M. G.
(
2006
). “
Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation
,”
J. Acoust. Soc. Am.
120
(
6
),
3493
3502
.
31.
Yuan
,
L.
, and
Agrawal
,
O. P.
(
2002
). “
A numerical scheme for dynamic systems containing fractional derivatives
,”
J. Vib. Acoust.
124
(
2
),
321
324
.

Supplementary Material

You do not currently have access to this content.