Th e Laplace transform formulation proposed by Di and Gilbert [J. Acoust. Soc. Am. 93, 714–720 (1993)] is an efficient and accurate method for calculating the half-space Green's function. However, the integral upper limit required in this formulation has not been examined in the context of an extended reacting reflecting plane, which is a critical parameter influencing both the accuracy and efficiency of the formulation. In this article, the Laplace transform formulation is further explored, and a novel method is proposed for identifying the integral upper limit, which is verified through numerical studies.

1.
A. F.
Seybert
and
B.
Soenarko
, “
Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space
,”
J. Sound Vib.
110
,
112
117
(
1988
).
2.
W. L.
Li
,
T. W.
Wu
, and
A. F.
Seybert
, “
A half-space boundary element method for acoustic problems with a reflecting plane of arbitrary impedance
,”
J. Sound Vib.
171
,
173
184
(
1994
).
3.
H.
Brick
and
M.
Ochmann
, “
A half-space BEM for the simulation of sound propagation above an impedance plane
,”
J. Acoust. Soc. Am.
123
,
3418
(
2008
).
4.
H.
Wu
,
Y.
Liu
,
W.
Jiang
, and
W.
Lu
, “
A fast multipole boundary element method for three-dimensional half-space acoustic wave problems over an impedance plane
,”
Int. J. Comput. Methods
12
,
1350090
(
2015
).
5.
S.
Marburg
and
B.
Nolte
,
Computational Acoustics of Noise Propagation in Fluids—Finite and Boundary Element Methods
(
Springer-Verlag
,
Berlin
,
2008
), pp.
480
482
.
6.
H. M.
Hess
,
K.
Attenborougha
, and
N. W.
Heap
, “
Ground characterization by short-range propagation measurements
,”
J. Acoust. Soc. Am.
87
,
1975
1986
(
1990
).
7.
C.
Nocke
,
T.
Waters-Fuller
,
K.
Attenborough
,
V.
Mellert
, and
K. M.
Li
, “
Impedance deduction from broad-band point-source measurements at grazing incidence
,”
Acta Acust. united Acust.
83
,
1085
1890
(
1997
).
8.
S.
Taherzadeh
and
K.
Attenborough
, “
Deduction of ground impedance from measurements of excess attenuation spectra
,”
J. Acoust. Soc. Am.
105
,
2039
2042
(
1999
).
9.
E.
Brandao
,
E.
Tijs
,
A.
Lenzi
, and
H.-E.
de Bree
, “
A comparison of three methods to calculate the surface impedance and absorption coefficient from measurements under free field or in situ conditions
,”
Acta Acust. united Acust.
97
,
1025
1033
(
2011
).
10.
C. F.
Chien
and
W. W.
Soroka
, “
Sound propagation along an impedance plane
,”
J. Sound Vib.
43
,
9
20
(
1975
).
11.
R. J.
Donato
, “
Propagation of a spherical wave near a plane boundary with a complex impedance
,”
J. Acoust. Soc. Am.
60
,
34
39
(
1976
).
12.
K.
Attenborough
,
S. I.
Hayek
, and
J. M.
Lawther
, “
Propagation of sound above a porous half-space
,”
J. Acoust. Soc. Am.
68
,
1493
1501
(
1980
).
13.
T.
Kawai
,
T.
Hidaka
, and
T.
Nakajima
, “
Sound propagation above an impedance boundary
,”
J. Sound Vib.
83
,
125
138
(
1982
).
14.
M. A.
Nobile
and
S. I.
Hayek
, “
Acoustic propagation over an impedance plane
,”
J. Acoust. Soc. Am.
78
,
1325
1336
(
1985
).
15.
K. M.
Li
,
T.
Waters-Fuller
, and
K.
Attenborough
, “
Sound propagation from a point source over extended-reaction ground
,”
J. Acoust. Soc. Am.
104
,
679
685
(
1998
).
16.
J. F.
Allard
,
G.
Jansens
, and
W.
Lauriks
, “
Reflection of spherical waves by non-locally reacting porous media
,”
Wave Motion
36
,
143
155
(
2002
).
17.
J. F.
Allard
, “
Prediction of the acoustic field due to a point source over a porous layer
,”
J. Acoust. Soc. Am.
125
,
1864
1867
(
2009
).
18.
X.
Di
and
K. E.
Gilbert
, “
An exact Laplace transform formulation for a point source above a ground surface
,”
J. Acoust. Soc. Am.
93
,
714
720
(
1993
).
19.
M.
Ochmann
, “
The complex equivalent source method for sound propagation over an impedance plane
,”
J. Acoust. Soc. Am.
116
,
3304
3311
(
2004
).
20.
C.-X.
Bi
,
W.-Q.
Jing
,
Y.-B.
Zhang
, and
W.-L.
Lin
, “
Reconstruction of the sound field above a reflecting plane using the equivalent source method
,”
J. Sound Vib.
386
,
149
162
(
2017
).
21.
M. E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbent materials
,”
Appl. Acoust.
3
,
105
116
(
1970
).
You do not currently have access to this content.