Th e Laplace transform formulation proposed by Di and Gilbert [J. Acoust. Soc. Am. 93, 714–720 (1993)] is an efficient and accurate method for calculating the half-space Green's function. However, the integral upper limit required in this formulation has not been examined in the context of an extended reacting reflecting plane, which is a critical parameter influencing both the accuracy and efficiency of the formulation. In this article, the Laplace transform formulation is further explored, and a novel method is proposed for identifying the integral upper limit, which is verified through numerical studies.
REFERENCES
1.
A. F.
Seybert
and
B.
Soenarko
, “
Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space
,” J. Sound Vib.
110
, 112
–117
(1988
).2.
W. L.
Li
,
T. W.
Wu
, and
A. F.
Seybert
, “
A half-space boundary element method for acoustic problems with a reflecting plane of arbitrary impedance
,” J. Sound Vib.
171
, 173
–184
(1994
).3.
H.
Brick
and
M.
Ochmann
, “
A half-space BEM for the simulation of sound propagation above an impedance plane
,” J. Acoust. Soc. Am.
123
, 3418
(2008
).4.
H.
Wu
,
Y.
Liu
,
W.
Jiang
, and
W.
Lu
, “
A fast multipole boundary element method for three-dimensional half-space acoustic wave problems over an impedance plane
,” Int. J. Comput. Methods
12
, 1350090
(2015
).5.
S.
Marburg
and
B.
Nolte
, Computational Acoustics of Noise Propagation in Fluids—Finite and Boundary Element Methods
(
Springer-Verlag
,
Berlin
, 2008
), pp. 480
–482
.6.
H. M.
Hess
,
K.
Attenborougha
, and
N. W.
Heap
, “
Ground characterization by short-range propagation measurements
,” J. Acoust. Soc. Am.
87
, 1975
–1986
(1990
).7.
C.
Nocke
,
T.
Waters-Fuller
,
K.
Attenborough
,
V.
Mellert
, and
K. M.
Li
, “
Impedance deduction from broad-band point-source measurements at grazing incidence
,” Acta Acust. united Acust.
83
, 1085
–1890
(1997
).8.
S.
Taherzadeh
and
K.
Attenborough
, “
Deduction of ground impedance from measurements of excess attenuation spectra
,” J. Acoust. Soc. Am.
105
, 2039
–2042
(1999
).9.
E.
Brandao
,
E.
Tijs
,
A.
Lenzi
, and
H.-E.
de Bree
, “
A comparison of three methods to calculate the surface impedance and absorption coefficient from measurements under free field or in situ conditions
,” Acta Acust. united Acust.
97
, 1025
–1033
(2011
).10.
C. F.
Chien
and
W. W.
Soroka
, “
Sound propagation along an impedance plane
,” J. Sound Vib.
43
, 9
–20
(1975
).11.
R. J.
Donato
, “
Propagation of a spherical wave near a plane boundary with a complex impedance
,” J. Acoust. Soc. Am.
60
, 34
–39
(1976
).12.
K.
Attenborough
,
S. I.
Hayek
, and
J. M.
Lawther
, “
Propagation of sound above a porous half-space
,” J. Acoust. Soc. Am.
68
, 1493
–1501
(1980
).13.
T.
Kawai
,
T.
Hidaka
, and
T.
Nakajima
, “
Sound propagation above an impedance boundary
,” J. Sound Vib.
83
, 125
–138
(1982
).14.
M. A.
Nobile
and
S. I.
Hayek
, “
Acoustic propagation over an impedance plane
,” J. Acoust. Soc. Am.
78
, 1325
–1336
(1985
).15.
K. M.
Li
,
T.
Waters-Fuller
, and
K.
Attenborough
, “
Sound propagation from a point source over extended-reaction ground
,” J. Acoust. Soc. Am.
104
, 679
–685
(1998
).16.
J. F.
Allard
,
G.
Jansens
, and
W.
Lauriks
, “
Reflection of spherical waves by non-locally reacting porous media
,” Wave Motion
36
, 143
–155
(2002
).17.
J. F.
Allard
, “
Prediction of the acoustic field due to a point source over a porous layer
,” J. Acoust. Soc. Am.
125
, 1864
–1867
(2009
).18.
X.
Di
and
K. E.
Gilbert
, “
An exact Laplace transform formulation for a point source above a ground surface
,” J. Acoust. Soc. Am.
93
, 714
–720
(1993
).19.
M.
Ochmann
, “
The complex equivalent source method for sound propagation over an impedance plane
,” J. Acoust. Soc. Am.
116
, 3304
–3311
(2004
).20.
C.-X.
Bi
,
W.-Q.
Jing
,
Y.-B.
Zhang
, and
W.-L.
Lin
, “
Reconstruction of the sound field above a reflecting plane using the equivalent source method
,” J. Sound Vib.
386
, 149
–162
(2017
).21.
M. E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbent materials
,” Appl. Acoust.
3
, 105
–116
(1970
).© 2025 Acoustical Society of America.
2025
Acoustical Society of America
You do not currently have access to this content.